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A B S T R A C T  

Lung ca nce r is a lea din g cause of ca nce r mortality globally, hi ghli gh ting the importa nce of unde rs ta nding its mortality risks to design effe ctiv e 
patie n t-ce n te red the ra pies. The National Lung Screening Trial ( NLST ) employe d c ompute d tomo grap hy texture analysis, which provides ob- 
je ctiv e meas ure me n ts of textur e pa t tern s on CT s can s, to quantify the mortality risks of lung ca nce r patie n ts. Pa rtially linea r Cox models h av e 
gained popularity for survival analysis by dis s e cting the h aza rd function in to pa ra metric a nd nonpa ra metric compone n ts, allowing for the ef- 
fe ctiv e inc orporation of both we ll-e st abli shed ri sk factors ( such as age and clinical v ari ab les ) and emerg ing ri sk factors ( e g, im ag e fe a tur es ) 
within a unified fra mework. Howeve r, whe n the dime nsion of pa ra metric compone n ts exc e e ds the s amp le size, the t ask of mode l fitting be c omes 
formid ab le, while nonpa ra metric modeling gra pples with the c ur se of d imensional ity. We propose a nov el Pen alize d D e ep Pa rtially Linea r Cox 
Model ( Pen alize d DPLC ) , which inc orporate s the s moothly clipped abs o lute devi ation ( SCAD ) pen alty to sele ct importa n t textur e fea tur es and 

e mplo ys a deep neural network to estimate the nonparametric component of the model. We prove the c onv e rge nce a nd asymptotic prope rties 
of the estimator and compare it to other methods through exten sive simul ation studies, ev aluating its perform anc e in risk prediction and fea tur e 
s election . The propos ed me thod is app lied to the NLST study d atas e t to unc ov er the effe cts of key clinical and imaging risk factors on patie n ts’ 
survival. Our findings provide v aluab le in si gh ts in to the r ela tionship betw e en these factors and survival outc omes . 

KEY W OR DS : CT texture an alysis; de e p ne ur al network; error r ate; feature selection; regularization; sele ction c onsis te nc y; surv ival prediction. 
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1 I N T R O D U C T I O N 

ven with the adve n t of modern medicine, lung ca nce r mortality
e mains hi gh, with a 5-yea r s urvival rate low er th an 20% among
dvanc e d patients ( B a de and Cruz , 2020 ) . Identi fyin g risk fa c-
ors releva n t to lung ca nce r surviv al is es s e n tial for desi gning
a nce r preve n tion progra ms ( Ba rbeau et al., 2006 ) for preven-
ion a nd ea rly de tection . The Nation al Lung Canc er Scre en Trial
 NLST ) was designed to inves ti gate the use of c ompute d to-
o grap hy ( CT ) for lung canc er dete ction, enr olling mor e than

3 000 p articip ants from August 2002 through April 2004, with
bout 26 000 ra ndomly assi gned to receive CT ( Team, 2011 ) .
n add ition, cl inical inform ation, s uch as ag e, g e nde r, smoking
is tory, a nd ca nce r s tage, w as co llected for each patie n t. The
tudy found a 20% decrease in lung ca nce r mortality for patie n ts
cre ene d by CT. It is of interest to examine whether CT confers
 aluab le fea tur e s to he lp predict lung ca nce r survival a nd desi gn
fficie n t dis eas e m an agement strate gies . CT texture an alysis pro-
ides o bj e ctiv e as s es sme n ts of the texture patterns of the tumor
y evaluating the rel ation ship of voxel in te nsities ( Lubne r et al.,
017 ) . Ide n tifying r epr oducible and robust texture features in
e c eiv e d: March 8, 2023; Revised: Septe mbe r 22, 2023; Ac c epte d: D e c e mbe r 6, 2023 
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he presence of other clinical factors affecting patie n ts ’ outcome s
emains a challenge due to the s en sitivity of radiomic fea tur es
 o fact ors such as sca nne r type, segme n tation, a nd orga n mo-
ion ( Lambin et al., 2017 ) . 

Pa rtially linea r Cox models h av e gaine d popul arity as a us e-
ul extension of the classic Cox models ( Cox, 1972 ) for survival
n alysis . This model offers more flexibility in the risk function by
ep arating the ha zard function into parame tric rel ative risks for
 ertain c ov ari ates and nonparame tric rel ative risks for the others
 Huang, 1999 ) . In the NLST an alysis, w e h av e chosen to adopt
his model b y assi gning the pa ra metr ic r isks t o the t exture fea-
ures and the nonparametric risks to the clinical fea tur es such
s ag e, g e nde r, a nd race. This s e tup provides a clear interpret a -
ion of textur e fea tur es as in regular Cox mode ls, facilit ate s the
election of crucial radiomic fea tur es, a nd offe rs extra flexibil-
ty in modeling the effects and potential interactions of the well-
nown clinical fea tur es. 
To estimate the nonparametric risk function, r esear chers h av e

ropos ed v arious me thods, such as po lynomi al sp lines ( Huang,
999 ) . Re c e n tly, Zhong et al. ( 2022 ) made a br eakthr ough by us-
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ing deep neural networks ( DNNs ) t o estimat e the nonp aramet -
r ic r isk function in pa rtially linea r Cox models a nd es tablished
an optim al minim ax rate of c onv e rge nce for the DNN - based e s ti -
m ator, and show e d th at DNN approxim ates a wide range of non-
pa ra me tric function s with fas te r c onv e rge nc e. How ev e r, the pe r-
form anc e of this method remains unknown when dealing with a
la rge n umbe r of textur e fea tur es, which is the case in the NLST
study. 

In ma ny a pp lication s, the neural ne tw ork h as prov en to be
powerful for appr oxima t ing complex funct ions by pro vidin g a c-
cura te appr oxima tions of con tin uous functions ( Leshno et al.,
1993 ) . Under some s moothne ss a nd s tructural as sumption s,
Schmidt-Hieber ( 2020 ) show e d th at DNN estim ators m ay cir-
cumve n t the curse of dime nsionality a nd achieve the optimal
minimax rate of conve rge nce. W ith limited s amp les, however,
a complex DNN can sti l l lead to ove rfitting ( Srivas tava et al.,
2014 ) . Ea rly s toppin g durin g trainin g ( Li et al., 2020 ) , and
a ddin g dropout layers ( Sriv astav a e t al., 2014 ) , h av e be en pro-
posed to address o verfittin g, but none has been studied in the
s urvival c ontext. 

To fil l this ga p, we propose a Pe n alize d D e ep Pa rtially Linea r
Co x Model ( Penaliz ed DPL C ) . T his fra mework ide n tifies valu-
able radiomic fea tur e s and mode ls the complex re lationships be-
tw e en s urvival outc ome s and e st abl ished cl inical cha racte ris tics
such as age, body mass index ( BMI ) , a nd pack-yea rs of smok-
ing. The main contributions of our work lie in the proposed
pen alize d estim ation, in the context of DNN, to select texture
fea tur es tha t influenc e s urvival outc omes while av oidin g o verfit-
tin g, combinin g fea tur e sele ction, and de ep learning in one s o lu-
tion. Se c ond, w e de mons trat e the asympt ot ic propert ies of the
es timator b y dete rmining its c onv e rge nce rates a nd pro vin g se-
le ction c onsis te ncy. Fin ally, w e perform c omprehensiv e simula-
tions to validate the proposed model’s theor etical pr ope rties a nd
compare it with the other methods in risk prediction and fea tur e
s election . 

In the following, Section 2 introduces the Penalized DPLC
model and Section 3 prese n ts a n efficie n t alte rnat ing opt imiza-
tion algorithm . Theore tical results are provided in Section 4 ,
where we prove the conve rge nce rate and v ari ab le s election
consis te ncy. In Section 5 , we conduct simul ation s to ev aluate
the pe rforma nce of the Penalized DPLC and compare it with
othe r s tate-of-the-a rt models. We a pply the Pe n alize d DPLC to a
d atas e t from the NLST study in Section 6 to ide n tify importa n t
textur e fea tur es r ela t ed t o patie n t survival. 

2 S C A  D - P E N A  L I Z E D  D E E P  PA  RT I A  L LY  

L I N E A R COX  M O D E L  S  

A partially linear Cox model assumes a hazard function: 

λ(t| x, z ) = λ0 (t ) exp ( β� 

0 x + g 0 (z )) , ( 1 )

whe re x ∈ R 

p a nd z ∈ R 

r are tw o c ov ari ate v e ctors, and λ0 ( t )
is the baseline hazard. This cl as s of models contains the ordi-
nary Cox pr oportional hazar ds model as a speci al cas e if g 0 ( z )
is a linear function of z . In NLST, x r epr ese n ts texture features
and z r epr ese n ts known clinical fea tur es such as age BMI, ge nde r,
race, a nd ca nce r s tage. The coefficie n ts measurin g the impa ct of
textur e fea tur es ar e r epr ese n ted b y β0 , while the nonpa ra metric
risk function of clinical fea tur es is r epr ese n ted b y g 0 a nd is to be
appr oxima ted by a function in a DNN. We consider a practical 
s e t ting wher e p , the dimension of x , can exc e e d the s amp le size,
which ne c e ssit ate s variable se le ction. As s uch, β0 is a n s β -spa rse
v e ctor, th at is, ‖ β0 ‖ 0 = s β < p. On the other hand, the impor- 
ta n t clinical fea tur es h av e a moderate dimension of r , and their 
complex impacts are to be modeled by a DNN. 

As defined in Schmidt-Hieber ( 2020 ) and Zhong et al. 
( 2022 ) , a DNN with ar chitectur e ( L , p ) has L + 1 layers, in- 
cluding an input layer, L − 1 hidden layers and an output layer, 
and a width v e ctor p = ( p 1 , p 2 , . . . , p L + 1 ) whose ele me n ts a re
the n umbe rs of neur ons in the corr esponding la yer. I n this con- 
text, a DNN has 2 or more hidden layers, while shallow networks 
are those with only 1 hidden la yer ( Schmidt-Hieber, 2020 ) . I n 

our case, the dimension of the input fea tur es, p 1 = r , a nd the di -
mension of output, p L + 1 = 1. An ( L + 1 ) -layered neural net- 
work with an ar chitectur e ( L , p ) can be expres s e d as a c omposite 
function, g : R 

r → R 

1 , with L folds, that is, g = g L ◦g L − 1 ◦···◦g 1 , 
where ‘ ◦’ is the function al c omposition, and the l th fold function, 
g l (·) = σl (W l · + b l ) : R 

p l → R 

p l+1 with l = 1 , . . . , L. Here, 
W l is a p l + 1 ×p l wei gh t matrix, b l is a p l + 1 - dimensional b ias vec- 
tor and ‘ ·’ r epr ese n ts a n input from laye r l . We use � t o denot e
the s e t of pa ra mete rs for the neural netw ork c ontaining all the 
wei gh t matrices and bias vectors to be estim ate d . The funct ion 

σl : R 

p l+1 → R 

p l+1 is an act ivat ion funct ion, possibly nonlinear, 
tha t opera tes compone n t-wise on a v e ctor. 

Various act ivat ion funct ions exist, with rect ified linear units 
( ReLU ) , that is, max ( 0, a ) , being a commonly used choice. Our 
prima ry e mphasis lies in neural ne tworks emp loying ReLU func- 
tion s acros s all l ayers, althou gh the se can be read ily mod ified. 
More ov er, DNNs with c omp lex ne twork s tructures a nd a la rge 
n umbe r of pa ra mete rs a r e pr one to overfit ting. This w ork c on-
ce n trates on a cl as s of DNNs with spa rsity cons train ts on the 
wei gh t a nd bias m atric es ( Zhon g et al., 2022 ; Schmidt-Hie ber, 
2020 ) : 

G(L, p , s, G ) 

= { g ∈ G(L, p ) : 
L ∑ 

l=1 

‖ W l ‖ 0 + ‖ b l ‖ 0 ≤ s, ‖ g‖ ∞ 

≤ G } . 

Here, s ∈ N + 

( the s e t of positiv e inte gers ) , G > 0, ‖ g‖ ∞ 

=
sup {| g(z ) | : z ∈ D ⊂ R 

r } is the sup-norm of function g , and 

D is a bounded s e t. In imp le me n ta tion, dir e ctly spe c i fying
or determining s , which contro ls ne twork sparsity, is not the 
norm . In s tead, a commonly e mplo yed technique is a “dropout”
proc e dure within the hidden layers, which randomly removes 
hidden neurons with a defined probability, referred to as the 
dr opout ra te ( Sriv astav a e t al., 2014 ) . To de te rmine a n a ppro-
pria te dr opout ra te, w e c onduct a grid s earch as done in our l ater
simul ation s and data an alysis . 

With ri gh t ce nsoring, we let U i a nd C i de note the sur- 
vival and cen s ored times for subject i , re spective ly. We ob- 
serve T i = min ( U i , C i ) , and �i = 1 ( U i ≤ C i ) , where 1 ( ·) 
is the indicator function, and assume the observ e d data D = 

{ (T i , �i , x i , z i ) , i = 1 , . . . , n } a re indepe nde n tly a nd ide n ti -
cally distributed ( I I D ) . To est imate g 0 in ( 1 ) , we su gge st using 
a DNN, denoted as G(L, p , s, ∞ ) , which t ake s z ∈ R 

r as input
fea tur es and produces a s cal ar output. To achieve v ari ab le s e lec -
tion among x , we propose a pen alize d estim a tion appr oach. 
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To proc e e d, w e define the partial l ikel ihood as 

� ( β, g) = 

1 

n 

n ∑ 

i =1 

�i 

[ 
β� x i + g( z i ) 

− log 
{ ∑ 

j∈ R i 
exp 

(
β� x j + g( z j ) 

)} ] 
, ( 2 ) 

here R i = { j : T j ≥ T i }, the at-risk s e t at time T i , and g ∈
(L, p , s, ∞ ) . We w ould estim ate β and g ( ·) by maximizing
 2 ) , where, to ac c ommodate sparsity, w e propose to use the
CAD penalty ( Fan and Li, 2001 ; 2002 ) defined as 

p 

′ 
λ(| β| ) = λ

{ 

I(| β| ≤ λ) + 

(aλ − | β| ) + 

(a − 1) λ
I(| β| > λ) 

} 

, 

a > 2 , 

ield ing a penal ized lo g parti al l ikel ihood, P L ( β, g) =
 ( β, g) − ∑ p 

j=1 p λ(| β j | ) . The SCAD penalty is indeed a
uadratic spline function with knots at λ a nd a λ, whe re λ > 0 is
iew e d as the tuning pa ra mete r con trolling the sparsity of β, and

s ass ume d to c onv erge to 0 as n → ∞ , though for simplification
e omit its depe nde nce on n . 
We estimate ( β0 , g 0 ) by maximizin g P L ( β, g ) , or, equiva-

e n tly, minimizing the loss function which is defined as the ne g -
tiv e pen alize d lo g parti al l ikel ihood: 

Q ( β, g) = q ( β, g) + 

p ∑ 

j=1 

p λ(| β j | ) , ( 3 ) 

here q ( β, g) = −� ( β, g) . That is, the estimate of ( β0 , g 0 ) is
 btained vi a 

( ̂  β, ̂  g ) = arg min 

β,g∈ R p ×G 
Q ( β, g) . ( 4 ) 

We prese n t below a n opt imizat ion algorithm for s o lving ( 4 )
lt ernat e ly, which use s the ada ptive mome n t es t imat ion ( Adam )
l gorithm to es timate g given an estimate of β, and, s ubse quently,
se s the re sulting e stimat e ̂  g t o estimat e β via c oordin ate desc e n t.

Step 1. Initialize β with 

̂ β
(0) 

. 

Step 2. De note b y ̂ β
(k−1) 

the es tima te of β a t the ( k − 1 ) th

iteration . So lve ( 4 ) for g , with β fixed at ̂ β
(k−1) 

, by
using Adam ( Algorithm 1 ) , where ̂  g (k) denotes the
curre n t es timate. 

Step 3. With g fixed at ̂  g (k) , solve ( 4 ) for β by using the coor-

din ate desc e n t al gorithm ( Al gorithm 2 ) , whe re ̂ β
(k) 

denotes the estimate at the curre n t ite ration. 

We r epea t s teps 2 a nd 3 un til c onv e rge nce. In s tep 2, we e mplo y
 n ada pted Ada m al gorithm ( Al gorithm 1 ) , a form of s tochas-
ic gradie n t desce n t ( Kingma a nd Ba, 2014 ) , to es timate � ( the
ei gh t matrices a nd bias vectors ) in the neural network. The

l gorithm is ada ptive as the upda te of � a t each itera tion step
 te m s from ad a ptive es t imat ion of the firs t a nd se c ond mome n ts
f the s tochas tic gradie n ts of the e mpirical loss ( Kingma a nd Ba,
014 ) . We initialize the bi as es to be 0 and use Xavier in iti al ization

o initialize the wei gh ts ( Glorot a nd Be ngio, 2010 ) . To e nsure
 ume rical s t ability, we add a s m all ε0 > 0 to the denomin ator,
nd the update for each parameter is determined by the adaptive
 stimate s for the first and se c ond moments of the gradients of the
mpirical loss at each iteration. Algorithm 1 di stingui shes from
he traditional Adam method in that it updates the pa ra mete rs in
he neural network while fixing β at its previous iter ation, r ather
han updating all parameters simultaneously. When implement-
ng Algorithm 1, we do not r equir e conve rge nce with a given up-
ate of β. In our expe rie nc e, sev e ral ite rative s teps would be suffi-
ie n t. Also as a la rge n umbe r of ite rations may lead to o verfittin g
f DNN, early stopping may preve n t ove rfitting a nd ca n produce
 consis te n t ne twork ( Ji e t al., 2021 ) . 

Al go rithm 1: Ad a m in alte rnat ing opt imizat ion 

Input : r 1 , r 2 , γ , ̂  β
(k−1) 

, ι
1 Initialize m 

(0) ← 0 , v (0) ← 0 , t ← 1 , �(0) 

2 while ‖ ̂

 �(t ) − ̂ �(t−1) ‖ 2 > ι do 

3 m 

(t ) ← r 1 · m 

(t−1) + (1 − r 1 ) · ∇ �Q ( ̂  β
(k−1) 

, ̂  g (t ) ) 

4 v (t ) ← r 2 · m 

(t−1) + (1 − r 2 ) · {∇ �Q ( ̂  β
(k−1) 

, ̂  g (t ) ) } 2 
5 ̂ m 

(t ) ← m 

(t ) / (1 − r t 1 ) , ̂  v (t ) ← v (t ) / (1 − r t 2 ) 
6 ̂ �(t ) ← 

̂ �(t−1) − γ ̂ m 

(t ) / ( 
√ ̂ v (t ) + ε0 ) 

7 t ← t + 1 

O utp ut: ̂  g (k) ← g(· | ̂ �(t ) ) 
8 Note: the square, division and square root from lines 3 to 6 

a re ope rated ele me n twise. 

Step 3 carries out a c oordin ate desc e n t al gorithm . The adv an-
age of c oordin ate desc e n t is that the pa ra mete rs, β, ar e upda ted
ndividually, whe re the closed -form s o lution for each pa ra me-
er is av ail ab le, gr ea tly facilita ting the computation ( Breheny and

uang, 2011 ) . Spec i fically, let ξ = X β ∈ R 

n , where X = ( x 1 , …,
 n ) � is the cov ari a te ( x ) ma trix of the n s ubje cts in the data. We
enote the gradient and Hes si an of the function q with respect to
and ξ given the current estimate of the neural network, ̂  g (k) , as
 

′ ( β;̂ g (k) ) , q ′′ ( β;̂ g (k) ) , q ′ ( ξ;̂ g (k) ) , and q ′′ ( ξ;̂ g (k) ) . To simplify
otation, we wi l l omit ̂  g (k) in the fol lowing. The function q ( β)

s appr oxima ted using a second order Taylor expansion around
 

 

(t ) : 

q ( β) ≈ q ( ̂  b 

(t ) ) + ( β −̂ b 

(t ) ) � q ′ ( ̂  b 

(t ) ) 

+( β −̂ b 

(t ) ) � q ′′ ( ̂  b 

(t ) )( β −̂ b 

(t ) ) / 2 

= 

1 

2 

( y ( ̂  ξ
(t ) 

) − ξ) � q ′′ ( ̂  ξ
(t ) 

)( y ( ̂  ξ
(t ) 

) − ξ) 

+ C( ̂  ξ
(t ) 

, ̂  b 

(t ) ) , 

here y ( ̂  ξ
(t ) 

) = ̂

 ξ
(t ) − q ′′ ( ̂  ξ

(t ) 
) −1 q ′ ( ̂  ξ

(t ) 
) and C( ̂  ξ

(t ) 
, ̂  b 

(t ) )
oes not depend on β. The equalities hold as q ′ ( β) = X 

� q ′ ( ξ)
nd q ′′ ( β) = X 

� q ′′ ( ξ) X by the chain rule. Then the loss
unction ( 3 ) a t itera tion t can be appr oxima ted by the pe-
 alize d w ei gh te d s um of squares, Q ( β) ≈ 1 

2 ( y ( ̂  ξ
(t ) 

) −
) � q ′′ ( ̂  ξ

(t ) 
)( y ( ̂  ξ

(t ) 
) − ξ) + C( ̂  ξ

(t ) 
, ̂  β

(t ) 
) + 

∑ p 
j=1 p λ(| β j | ) . 

o spe e d up the algorithm, w e m ay rep l ace q ′′ ( ̂  ξ
(t ) 

) by a
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diagon al m atrix, W( ̂  ξ
(t ) 

) , with the diagon al e n tries of q ′′ ( ̂  ξ
(t ) 

) : 

W( ̂  ξ
(t ) 

) m,m 

= q ′′ ( ̂  ξ
(t ) 

) m,m 

= 

1 

n 

∑ 

i ∈ C m 
�i 

{ 

e ̂  ξ
(t ) 
m + ̂  g (k) 

m 
∑ 

j∈ R i e ̂
 ξ

(t ) 
j + ̂  g (k) 

j − (e ̂  ξ
(t ) 
m + ̂  g (k) 

m ) 2 

( 
∑ 

j∈ R i e ̂
 ξ

(t ) 
j + ̂  g (k) 

j ) 2 

} 

, 

where C m 

= { i : T i ≤ T m 

}. In this case, 

y ( ̂  ξ
(t ) 

) m 

= ̂

 ξ
(t ) 
m 

+ 

1 

n W( ̂  ξ
(t ) 

) m,m 

{ 

�m 

−
∑ 

i ∈ C m 
�i 

( 

e ̂  ξ
(t ) 
m + ̂  g (k) 

m ∑ 

j∈ R i e ̂
 ξ

(t ) 
j + ̂  g (k) 

j 

) } 

. 

In the iteration of c oordin ate desc e n t, the pa ra mete rs a re up-
dated individually; each pa ra mete r has a closed-form solution,
m aking the c omputation m an ag e ab le. We emp loy an ad aptive
rescaling te chnique ( B rehe ny a nd Hua n g, 2011 ) ; the followin g
SC AD-threshold ing operator re turn s the univ ari ate s o lution for
the SC AD-penal i zed optimi zation: 

f SCAD 

(h, v ; a, λ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 

S (h,λ) 
v , if | h | ≤ 2 λ

S ( h,aλ/ ( a −1)) 
v ( 1 −1 / ( a −1)) , if 2 λ < | h | ≤ aλ
h/v, if | h | > aλ, 

where S ( ·, λ) is the s oft-thresho lding operator with a thresh-
old pa ra mete r, λ > 0 ( Donoho a nd Johns tone, 1994 ) , that is,
S ( h , λ) = sign ( h ) ( | h | − λ) + 

. He re, the si gn function sign ( h )
equals h / | h | if h � = 0, and 0 if h = 0; ( h ) + 

= max ( h , 0 ) . Let
r = y ( ξ) − ξ and v j = x � 

j W( ξ) x j . We define the following in-

put at the t th iteration, that is, h j = x � 

j W( ̂  ξ
(t ) 

) r + v j β
(t ) 
j . The

c oordin ate desc e n t al gorithm is prese n ted in Al gorithm 2. 

Al go rithm 2: Coor dina te D esc e n t in alte rnat ing opt imiza- 
tion 

Input : a , λ, ̂  b 

(0) = ̂

 β
(k−1) 

, ̂  g (k) , ι
1 Initialize t ← 1 , ̂  ξ

(0) ← X ̂

 b 

(0) , and r ← y ( ̂  ξ
(0) 

) −̂ ξ
(0) 

2 while ‖ ̂

 b 

(t ) −̂ b 

(t−1) ‖ 2 > ι do 

3 for j ← 1 to p do 

4 h j ← x � 

j W( ̂  ξ
(t−1) 

) r + v j β
(t−1) 
j 

5 ̂ β
(t ) 
j ← f SCAD 

(h j , v j ; a, λ) 
6 r ← r − ( ̂  β

(t ) 
j − ̂ β

(t−1) 
j ) x j 

7 ̂ ξ
(t ) ← X ̂

 b 

(t ) 

8 t ← t + 1 

O utp ut: ̂  β
(k) ← ̂

 b 

(t ) 

3 R E G U L A R I T Y  CO N D I T I O N S  A N D  

S  TAT I S  T I C A  L  P R O P E RT I E  S  

We impose sparsity on β0 = (β10 , . . . , βp0 ) � = ( β� 

10 , β
� 

20 ) 
�

by, without loss of generality, assuming β20 = 0 . We restrict
the true nonpa ra metric function g 0 to belong to a composite
Hölder cl as s of smooth functions, H ( q, α, d , ̃  d , M) , where the 
q composit ion funct ion s are Hölder smooth function s with pa- 
ra mete rs α = ( α1 , …, αq ) ( the orders of s moothne ss ) and M 

( bound ) . The c onc ept of the c omposite Hölder s mooth func - 
tion has been widely used to facilitate the d isc ussion of the theo- 
r etical pr operties of DNN ( Schmidt-Hie ber, 2020 ; Zhon g et al., 
2022 ) . Here, d = ( d 1 , …, d q ) and ̃

 d = ( ̃  d 1 , . . . , ̃  d q ) are 2 types 
of dimension parameters; the former is the dimension of input 
at each ‘layer,’ while the la t te r qua n tifies the in trinsic dime nsion 

of the a rgume n ts of act ivat ion funct ion s at each l ayer ( Zhong 
et al., 2022 ) , often much smaller than the fea tur e dimension at 
each layer. We wi l l prove that the conve rge nce rate of DNN de- 
pends on ̃

 d , instead of d , meaning a faster c onv ergenc e rate than 

the othe r nonpa ra metric es tim ators . D etails can be found in the 
Supplemen ta ry Mate rials . 

Throu ghout, E denote s the expect ation of ra ndom va ri - 
able s; unle ss otherwise spec i fied, for any function ( random or 
nonra ndom ) f a nd a random v e ctor, v , we define E { f (v) } : =∫ 

f ( t ) f v ( t ) dt , where f v ( ·) is the density function of v . Thus,
the expectation is taken with respect to only the a rgume n ts 
of the f function. For a v e ctor a , define || a || = ( a � a ) 1/2 , and
for a function g , define ‖ g ‖ 

2 
L 2 = E { g 2 (z ) } . We denote ˜ αi =

αi 
∏ q 

k= i +1 (αk ∧ 1) a nd γn = max i =1 , ... ,q n 

−˜ αi / (2 ̃  αi + ̃

 d i ) , a nd as- 
sume the following. 

1. Con sidering a cl as s of s -spars e DNNs or G(L, p , s, G ) ,
w e ass ume L = O ( log n ) , s = O (nγ 2 

n log n ) and nγ 2 
n < 

min l=1 , ... ,L p l ≤ max l=1 , ... ,L p l < n . 
2. With sli gh tly ove ruse of notation, de note b y x a nd z the 

random v e ctors underlying the o bs erv e d I I D copies of x i 
and z i , respe ctiv ely. Ass ume ( x � , z � ) � take values in a 
bounde d s ubs e t, D , of R 

p+ r with a j oint pro bability den- 
sity function bounded away from ze ro, a nd β0 lies in a 
compact s e t, th at is ., β0 ∈ { β ∈ R 

p : ‖ β‖ ≤ B } . 
3. Ass ume th at the nonpa ra metric function g 0 belongs to 

a mean 0 composite Hölder smooth cl as s, that is, g 0 ∈ 

H 0 : = { g ∈ H ( q, α, d , ̃  d , M) : E { g(z ) } = 0 } and the
matrix E { x − E (x| z ) } ⊗2 is non singul a r, whe re a ⊗2 = aa � 

for a column vector a . 
4. Let τ < ∞ be the m axim al followup time. We assume 

tha t ther e exits a δ > 0 such that P ( � = 1 | x , z ) > δ and
P ( U > τ | x , z ) > δ almost surely. 

Condition 1 restricts the ar chitectur e of neural networks, bal- 
ancing the network’s flexibility with the est imat ion a ccura cy 
( Zhong et al., 2022 ) . Condition 2 is c ommonly ass ume d for 
se mipa ra metric pa rtially linea r models ( Horowitz, 2009 ) . The 
Hölder s moothne ss in Condition 3 ensures that the function can 

be appr oxima ted by a DNN, while the zero expectation assump- 
tion yields the ide n tifiability of the DPLC ( Zhong et al., 2022 ) . 
In Condition 4, P ( �= 1 | x , z ) > δ spec i fies tha t ther e is nonzer o
pro bability of o bs e rving a n eve n t, a nd P ( U > τ | x , z ) > δ ensures
tha t ther e is nonzer o pr obability tha t s ome subj ects a re s ti l l alive
at the end of the study, both of which guarantee that the partially 
linear Cox model can be estim ate d using the o bs erv e d data. 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad024#supplementary-data
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With a n = max { p 

′ 
λ(| β j0 | : β j0 � = 0) } and b n =

ax { p 

′′ 
λ(| β j0 | : β j0 � = 0) } , the following theorem e st ablishe s

he exis te nce a nd the c onv e rge nce rates of ̂  β a nd ̂  g . 

 heore m 1 Un der Con d itions 1–4, a nd if b n → 0 ( with pro p erl y
h osen λ) , th en th ere e x is ts a loc a l m ax imi zer ( ̂  β, ̂  g ) of P L ( β, g)
a t isfying E { ̂  g (z ) } = 0 , s uch tha t 

‖ ̂

 β − β0 ‖ = O p (γn log 2 n + a n ) , ‖ ̂  g − g 0 ‖ L 2 

= O p (γn log 2 n + a n ) . 

emark 1 Th e th eorem sh ows t hat t he rate of con ver gen ce does n ot
epend on the nu mb er of input feat ure s, but rather on the i ntri nsic
im en sion and smo ot hness of the funct io n g 0 , u nl ike o th er n onpara-
etr ic e s t ima t o rs w hose co n ver gence ra t e a lso depen ds on the f e ature

im en sio n. As a res ul t, th e D NN es t ima t o r m ay h ave a n adva ntage
h en th e i ntri nsic di m en sion of th e true fun ct io n is low. 

e no w sho w th at the estim ator ̂ β = ( ̂  β
� 

1 , ̂
 β
� 

2 ) 
� for

( β� 

10 , β
� 

20 = 0 

� ) � pos s es s es a s ele ction c onsis te ncy prop-
rty, that is, ̂  β2 = 0 with probability going to 1. 

 heore m 2 Ass ume tha t lim inf n →∞ 

lim inf u → 0 + p 

′ 
λ(u ) /λ >

 , and λ is c hosen suc h that a n = O (γn log 2 n ) , and
min ( n 

1 / 2 , { γn log 2 ( n ) } −1 ) −→ ∞ , and the co ndit io ns of
he o rem 1 hold. Then with pro b ability ten ding to 1, the estimator ̂β

n The o rem 1 mus t sa t isfy ̂  β2 = 0 . 

emark 2 Bot h t h eorem s app l y to a broad ra nge of p en a l ty fun c-
 io ns. In part icular, as shown in Fan and Li ( 2001 ) , the SCAD
en a l ty fun ct io n sa t isfie s l im inf n →∞ 

l im inf u → 0 + p 

′ 
λ(u ) /λ > 0 ,

nd as λ → 0 + , a n = 0 when n is sufficiently l arge. Conse q u ently,
f λ con ver ges to 0 at an appropria t e ra t e, th e SCAD fun ct io n guar-
nt e es both the con ver gence ra t es ( The o rem 1 ) a nd va ri ab le sele ct io n
o nsis t ency ( The o rem 2 ) . 

4 S I M U L AT I O N S  

e c onducte d simul ation s to as s es s the finite s amp le perfor-
 anc e of our propose d estim ator by c omparing it with the

C AD-penal iz ed Co x Model ( Fa n a nd L i, 2002 ) , SCA D-
en alize d Partially Linear Cox Model using po lynomi al
plines ( Hu and Lian, 2013 ) , Cox Boosting ( Binder et al.,
009 ) , Ra ndom Fores t ( Ishwa ra n et al., 2008 ) a nd D e ep
urvival Model ( Katzman et al., 2018 ) . For i = 1, . . . , n , we
e ne rated ( x i , z i ) from a m ultiva riate Gaussia n dis tribution,

 p+ r 

{ 

0 , 
( 1 0 . 2 . . . 0 . 2 

. . . 
. . . 

. . . 
. . . 

0 . 2 1 . . . 1 

)} 

, and then generated the true

urvival time U i from a n expone n tial dis tribution with a hazard
exp ( βT 

0 x i + g 0 (z i )) , where μ was tuned to adjust for cen-
oring rate and β0 ∈ R 

p was a sparse v e ct or simulat ed from the
ni for m dis tribution. The n umbe r of nonze ro ele me n ts in β0 
 as s β , chos e n to be m uch less tha n the dime nsion of β0 . The

en s ored time C i w as simul a ted fr om U [0 , C] , wher e C was
hos en s o th at the c en s oring rate in the simul ated d ata is around

0%. d  
We simulated data sets with varying sample sizes and fea tur e
izes . Spe c i fically, w e fixe d the clinical fea tur e size, r , a t 8 and the
 umbe r of nonze r o radiomic fea tur es, s β , to be 10, while vary-

n g the trainin g s amp le size, n , to be 500 or 1500 and radiomic
ea tur e size, p , to be 600 or 1200. We as s es s e d the perform anc e
f the model under these four sc en arios with different numbers
f training s amp les and fea tur e sizes. For each simula tion s e tup
r configuration, a total of 500 indepe nde n tly sim ul ated d atas e ts
e re ge ne rated. 
We s e t g 0 : R 

8 → R to be a linear or nonlinear function,
espe ctiv ely. Th at is, g 0 (z ) = α� 

0 z with α0 ∈ R 

8 ge ne rated
rom U (−2 , 2) or 0.68exp ( z 1 ) − 0.45log { ( z 2 − z 3 ) 2 } +
.32sin ( z 4 z 5 ) − 0.45 ( z 6 − z 7 + z 8 ) 2 − 0.32. We tuned pa ra m-
ters for each method on each simulated dataset. Spec i fically,
o ide n tify the neural netw ork structure, w e tune d the n umbe r
f hidde n laye rs a nd the n umbe r of neurons in the hidden lay-
 rs ove r a grid of values, that is, 1–4 for the n umbe r of hidde n

aye rs a nd 2–8 for the n umbe r of neurons in the hidde n laye rs,
nd tuned the dr opout ra te and the learning ra te fr om 0.3 to 0.5
nd from 0.005 to 0.02, respe ctiv ely. For the SCAD pen alty, w e
 e t a = 3.7 as su gge s ted b y Fa n a nd Li ( 2001 ) a nd used grid
ea rch ove r [0.05,5] to find the bes t λ bas ed on the Bayesi an
nformation Cr iter ion ( BIC ) : −2 n� ( ̂  β, ̂  g ) + log n ·̂ s β, where
  β is the n umbe r of nonze ro coefficie n t es timates; for i l lustra-

ion, Figure S1 ( a and b ) in the Supplementary Material dis-
 l ay the selection of λ for SC AD-Penal ized DPLC on 10 sim-
l ated d atas e ts with ( n , p ) = ( 500, 1, 200 ) and the s o lution
ath for ̂  β with one randomly sele cte d dataset. We tuned for
ox Boos ting b y dete rmining the pe n alty value th at yielde d

n optim al c ount of boosting steps ( with a maximum of 200 ) .
 or Random F orest, w e tune d the termin al node size from
 to 150. 
To visually evaluate the a ccura cy of the DNN estimator in ap-

r oxima ting g 0 when it is nonlinear, Figure 1 disp l ays contour
lots of the true function and the average DNN e stimate s based
n 500 simulated datasets with n , p varying from 500 to 1500 and

rom 600 to 1200, respe ctiv ely. When cr ea ting these plots, we
xed the values of the last 6 a rgume n ts of the function at their
opul ation mean s and v aried the first 2 ar guments. T he results

ndica te tha t the DNN estima tes pr ovided a good appr oxima tion
f the true function, with increasing accuracy o bs erv e d as n in-
reased for a fixed value of p . 
Fi gure 2 compa red the Pe nal ized DPLC’s pred iction perfor-
 anc e with the compe ting me thods using the C-Index as the

r iter ion. When g 0 is linear or the ordinary Cox model holds,
hree Cox mode l- bas ed me thods, Cox-S CAD, S C AD spl ines,
 nd Boos ting, exc elle d with a hi ghes t media n C-Index of a pprox-
mately 0.92 across various c ombin ations of n and p . Our pe-
 alize d DPLC yielde d a c ompet it iv e me dia n C-Index, ra n gin g

rom 0.83 to 0.87 at n = 500 and improv e d to 0.89 at n = 1,
00; importa n tly, it outpe rforme d tw o nonpa ra me tric me thods:
a ndom Fores t ( media n C-Index values: 0.77–0.80 ) a nd D e ep
urvival Model ( 0.70–0.89 ) . When g 0 is nonlinear, our Penal-

zed DPLC model clearly outperformed the others across va ri -
us n and p . The hi ghes t media n C-Index of 0.868 [In te rqua r-

ile range ( IQR ) : 0.011] was achiev e d with ( n , p ) = ( 1, 500,
00 ) . As the fea tur e size incr eased, the pr e diction perform anc e
e crease d sli gh tly, for exa mp le, the medi a n C-Index for Pe nal -

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad024#supplementary-data


6 � Biometrics , 2024, Vol. 80, No. 1 

FIGURE 1 The Average Estimates of the Nonlinear Function using 500 Simulated Datas e ts with Varying n , p . The plots are made by varying 
the first 2 arguments fixing the other 6 arguments. 
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ize d DPLC de crease d from 0.841 ( IQR: 0.018 ) to 0.830 ( IQR:
0.032 ) when the fea tur e size incr eased fr om 600 to 1200 with
500 s amp les . The pre diction perform anc e improv e d with more
s amp les; the medi an C-Index for Pen alize d DPLC rose to 0.865
( IQR: 0.015 ) when the s amp le size increas e d to 1500, c ompare d
to 500 s amp les with 1200 fea tur es. 

To evaluate the selection pe rforma nce, we reported the num-
ber of sele cte d fea tur es, false positive n umbe r ( FPN ) , false pos-
itive rate ( FPR ) , false negative n umbe r ( FNN ) , a nd false nega-
tive rate ( FNR ) . Let S and 

̂ S re pre se n t the actual and estim ate d
( ie, the sele cte d fea tur es ) support of β, and Card ( ·) the car-
d inal ity of a s e t. T hen FPN = Car d( ̂  S \S) , FPR = FPN / { p −
 ard(S) } , FNN = C ard(S\ ̂  S ) , and FNR = FNN /C ard(S) .

Whe n g 0 ( z ) is linea r on z , in which cas e the model as sumption s
wer e sa tisfied for the SC AD-penal iz ed Co x model with and with-
out po lynomi al sp lines, they outpe rformed the othe r compet-
in g methods, includin g the Pen alize d DPL C ( Ta ble 1 ) . Ho w -
eve r, the pe rforma nce of the penalized DPLC was comparable
to the m. For exa mple, the 2 pe n alize d Cox mode ls re ported an 

FPN of less than 1, while the pen alize d DPLC reporte d only 
0.6 more FPNs on average than them. In addition, the average 
FNN, that is, the mis s e d ‘activ e’ fea tur es, of the Pen alize d DPLC
was only 0.74–2.31 ( across various c onsidere d sc en arios ) higher 
tha n the pe naliz ed Co x models . On the other h a nd, the pe rfor-
m anc e of the Pen alize d DPLC was clearly better than Cox Boost- 
ing and Random Forest. Cox Boosting tended to select more 
fea tur es; when ( n , p ) = ( 1 500, 1 200 ) , Cox Boosting reported 

an FPN of 33.64 ( SE: 0.60 ) , whereas the FPN for the Penal- 
ized DPLC was 1.40 ( SE: 0.10 ) . For Random Forest, the aver- 
age FNN varied from 4.12 to 6.17, compared to 1.33–3.49 for 
the Pen alize d DPL C. T he ave rage FPN for Ra ndom Fores t va r- 
ied from 3.75 to 6.11, while it was 0.31–1.69 for the Penalized 

DPLC. 
When g 0 ( z ) is nonlinear, the Pen alize d DPLC outperforme d 

almost all of the other methods ( except for Cox Boosting ) in 

FNN. Cox Boosting had an FNN of 1.69 ( SE: 0.04 ) , while the 
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FIGURE 2 Prediction Pe rforma nce Based on 500 Simulated Datas e ts. 
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TAB LE 1 Sele ction perform anc e of different algorithms using 500 simulated datasets. 

Method Sele cte d Fea tur es 1 FPN 

2 FPR ( % ) 3 FNN 

4 FNR ( % ) 5 

Linea r Cas e 
( n , p ) = ( 500, 600 ) Pen alize d DPLC 6.90 ( 0.07 ) 0.39 ( 0.04 ) 0.07 ( 0.01 ) 3.49 ( 0.04 ) 34.90 ( 0.39 ) 

SCAD 9.47 ( 0.19 ) 0.48 ( 0.09 ) 0.08 ( 0.01 ) 1.32 ( 0.11 ) 13.20 ( 1.10 ) 
SC AD spl ine 9.51 ( 0.21 ) 0.69 ( 0.15 ) 0.12 ( 0.03 ) 1.18 ( 0.11 ) 11.80 ( 1.10 ) 
Cox Boosting 48.10 ( 1.02 ) 38.75 ( 1.01 ) 6.57 ( 0.17 ) 0.65 ( 0.08 ) 6.50 ( 0.82 ) 

Ra ndom Fores t 9.51 ( 0.21 ) 4.90 ( 0.26 ) 0.83 ( 0.04 ) 5.39 ( 0.13 ) 53.90 ( 1.29 ) 
( n , p ) = ( 500, 1 200 ) Pen alize d DPLC 9.90 ( 0.08 ) 1.69 ( 0.09 ) 0.14 ( 0.01 ) 1.79 ( 0.05 ) 17.86 ( 0.49 ) 

SCAD 9.92 ( 0.08 ) 0.85 ( 0.06 ) 0.07 ( 0.01 ) 0.93 ( 0.04 ) 9.32 ( 0.40 ) 
SC AD spl ine 9.94 ( 0.08 ) 0.89 ( 0.07 ) 0.07 ( 0.01 ) 0.95 ( 0.04 ) 9.48 ( 0.40 ) 
Cox Boosting 49.22 ( 0.54 ) 39.91 ( 0.54 ) 3.35 ( 0.05 ) 0.69 ( 0.03 ) 6.88 ( 0.34 ) 

Ra ndom Fores t 9.94 ( 0.08 ) 6.11 ( 0.10 ) 0.51 ( 0.01 ) 6.17 ( 0.06 ) 61.74 ( 0.56 ) 
( n , p ) = ( 1 500, 600 ) Pen alize d DPLC 8.99 ( 0.08 ) 0.31 ( 0.07 ) 0.05 ( 0.01 ) 1.33 ( 0.04 ) 13.26 ( 0.38 ) 

SCAD 9.34 ( 0.03 ) 0.01 ( 0.00 ) 0.00 ( 0.00 ) 0.67 ( 0.03 ) 6.68 ( 0.33 ) 
SC AD spl ine 9.63 ( 0.04 ) 0.22 ( 0.03 ) 0.04 ( 0.00 ) 0.59 ( 0.03 ) 5.88 ( 0.33 ) 
Cox Boosting 42.68 ( 0.53 ) 33.00 ( 0.53 ) 5.59 ( 0.09 ) 0.33 ( 0.02 ) 3.26 ( 0.25 ) 

Ra ndom Fores t 9.63 ( 0.04 ) 3.75 ( 0.07 ) 0.64 ( 0.01 ) 4.12 ( 0.06 ) 41.20 ( 0.63 ) 
( n , p ) = ( 1 500, 1 200 ) Pen alize d DPLC 9.87 ( 0.12 ) 1.40 ( 0.10 ) 0.12 ( 0.01 ) 1.53 ( 0.05 ) 15.32 ( 0.55 ) 

SCAD 9.23 ( 0.04 ) 0.04 ( 0.01 ) 0.00 ( 0.00 ) 0.81 ( 0.04 ) 8.08 ( 0.39 ) 
SC AD spl ine 9.65 ( 0.05 ) 0.37 ( 0.04 ) 0.03 ( 0.00 ) 0.72 ( 0.04 ) 7.16 ( 0.37 ) 
Cox Boosting 43.19 ( 0.61 ) 33.64 ( 0.60 ) 2.83 ( 0.05 ) 0.45 ( 0.03 ) 4.46 ( 0.28 ) 

Ra ndom Fores t 9.65 ( 0.05 ) 4.36 ( 0.08 ) 0.37 ( 0.01 ) 4.71 ( 0.06 ) 47.08 ( 0.65 ) 
Nonlinea r Cas e 
( n , p ) = ( 500, 600 ) Pen alize d DPLC 11.04 ( 0.11 ) 2.52 ( 0.10 ) 0.43 ( 0.02 ) 1.48 ( 0.03 ) 14.76 ( 0.29 ) 

SCAD 12.68 ( 0.19 ) 4.66 ( 0.17 ) 0.79 ( 0.03 ) 1.98 ( 0.05 ) 19.78 ( 0.47 ) 
SC AD spl ine 12.32 ( 0.18 ) 4.13 ( 0.16 ) 0.70 ( 0.03 ) 1.81 ( 0.05 ) 18.08 ( 0.46 ) 
Cox Boosting 34.73 ( 0.49 ) 26.02 ( 0.48 ) 4.41 ( 0.08 ) 1.29 ( 0.04 ) 12.90 ( 0.38 ) 

Ra ndom Fores t 12.32 ( 0.18 ) 7.27 ( 0.18 ) 1.23 ( 0.03 ) 4.95 ( 0.06 ) 49.50 ( 0.59 ) 
( n , p ) = ( 500, 1,200 ) Pen alize d DPLC 10.74 ( 0.13 ) 2.88 ( 0.12 ) 0.24 ( 0.01 ) 2.14 ( 0.04 ) 21.38 ( 0.37 ) 

SCAD 12.89 ( 0.21 ) 5.25 ( 0.19 ) 0.44 ( 0.02 ) 2.36 ( 0.05 ) 23.64 ( 0.51 ) 
SC AD spl ine 17.87 ( 0.97 ) 10.02 ( 0.97 ) 0.84 ( 0.08 ) 2.15 ( 0.05 ) 21.48 ( 0.48 ) 
Cox Boosting 34.90 ( 0.49 ) 26.59 ( 0.47 ) 2.23 ( 0.04 ) 1.69 ( 0.04 ) 16.94 ( 0.44 ) 

Ra ndom Fores t 17.87 ( 0.97 ) 13.16 ( 0.96 ) 1.11 ( 0.08 ) 5.28 ( 0.05 ) 52.84 ( 0.51 ) 
( n , p ) = ( 1 500, 600 ) Pen alize d DPLC 9.14 ( 0.04 ) 0.26 ( 0.02 ) 0.04 ( 0.00 ) 1.12 ( 0.03 ) 11.16 ( 0.33 ) 

SCAD 8.76 ( 0.05 ) 0.47 ( 0.03 ) 0.08 ( 0.01 ) 1.71 ( 0.05 ) 17.06 ( 0.45 ) 
SC AD spl ine 10.49 ( 0.11 ) 1.82 ( 0.10 ) 0.31 ( 0.02 ) 1.32 ( 0.04 ) 13.24 ( 0.40 ) 
Cox Boosting 33.12 ( 0.52 ) 24.02 ( 0.51 ) 4.07 ( 0.09 ) 0.90 ( 0.03 ) 9.00 ( 0.34 ) 

Ra ndom Fores t 10.49 ( 0.11 ) 4.08 ( 0.13 ) 0.69 ( 0.02 ) 3.58 ( 0.06 ) 35.84 ( 0.59 ) 
( n , p ) = ( 1 500, 1 200 ) Pen alize d DPLC 9.20 ( 0.08 ) 0.94 ( 0.06 ) 0.08 ( 0.00 ) 1.74 ( 0.05 ) 17.40 ( 0.46 ) 

SCAD 9.04 ( 0.09 ) 1.16 ( 0.07 ) 0.10 ( 0.01 ) 2.12 ( 0.05 ) 21.20 ( 0.50 ) 
SC AD spl ine 10.35 ( 0.13 ) 2.17 ( 0.11 ) 0.18 ( 0.01 ) 1.83 ( 0.05 ) 18.26 ( 0.47 ) 
Cox Boosting 33.20 ( 0.55 ) 24.56 ( 0.54 ) 2.06 ( 0.05 ) 1.36 ( 0.04 ) 13.58 ( 0.40 ) 

Ra ndom Fores t 10.35 ( 0.13 ) 4.60 ( 0.13 ) 0.39 ( 0.01 ) 4.26 ( 0.06 ) 42.56 ( 0.61 ) 
Not es: 1 T he n umbe r of true ‘active’ fea tur es is s e t t o be t en. 
2 False positive n umbe r ( FPN ) is the n umbe r of fea tur es tha t ar e ‘in activ e’ but sele cte d by the model as ‘activ e’ fea tur es. 
3 False positive rate ( FPR ) is the FPN divided by the true number of ‘in activ e’ fea tur es and r eported as a per centage ( × 100 ) . 
4 False ne gativ e n umbe r ( FNN ) is the n umbe r of fea tur es tha t ar e ‘activ e’ but sele cte d by the model as ‘in activ e’ fea tur es. 
5 False ne gativ e n umbe r ( FNR ) is the FNN divided b y the true n umbe r of ‘active’ fea tur es and r eported as a per centage ( × 100 ) . ∗ Reported n umbe rs a re mea ns a nd SEs . 
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Pen alize d DPLC reporte d a c omparable FNN of 2.14 ( S E: 0.04 )
with 500 s amp les and 1200 fea tur es . How ev e r, Cox Boos ting
had a m uch hi ghe r FPN of 26.59 ( SE: 0.47 ) compared to Pe nal -
ized DPLC’s 2.88 ( SE: 0.12 ) . The ave rage n umbe r of falsely se-
le cte d fea tur es using Pen alize d DPLC was 0.26–2.88, c ompare d
to 0.47–5.25 for the pen alize d Cox model. The selection per-
form anc e of Pen alize d DPLC improv e d with more s amp les and
fewer fea tur es, a chievin g the best perform anc e when ( n , p ) =
( 1500, 600 ) with an FPR of 0.04% and an FNR of 11.16%. 
 

5 A P P L I C AT I O N 

We applied the Pen alize d DPLC to analyze a d atas e t from NLST, 
inves ti ga ting wha t and how CT fea tur es wer e r ela t ed t o the mor-
tality of lung ca nce r patie n ts. The d atas e t includes a total of 368
s ubje cts from NLST who were di agnos ed with lung ca nce r a nd 

scre ene d with CT ( Table 2 ) . Out of them, 96 patients died dur- 
ing follo w -u p. The med i an age w as 63.5 years o ld ( IQR: 59.0, 
68.0 ) , with 55% being male a nd ove r 90% being white. Most pa- 
tie n ts we re in the ea rly ca nce r s tage, a nd hype rte n sion w as the
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TABLE 2 Clinical cha racte ris tics of patie n ts from the n ation al lung ca nce r scree n trial. 

Ch ara cteristic Overal l , N = 368 

1 Alive, N = 272 

1 Dead, N = 96 

1 

Medi an fo llo w -up time ( days ) 2072 ( 1962, 2151 ) 
Ag e ( ye ars ) 63.5 ( 59.0, 68.0 ) 63.0 ( 59.0, 67.0 ) 66.0 ( 60.0, 70.0 ) 
BMI 26.3 ( 24.3, 29.2 ) 26.3 ( 24.3, 29.2 ) 26.1 ( 24.1, 29.2 ) 
Ge nde r 

Male 201 ( 55% ) 137 ( 50% ) 64 ( 67% ) 
Female 167 ( 45% ) 135 ( 50% ) 32 ( 33% ) 

Race 
White 339 ( 92% ) 251 ( 92% ) 88 ( 92% ) 
B la ck 14 ( 3.8% ) 11 ( 4.0% ) 3 ( 3.1% ) 
Asian 8 ( 2.2% ) 6 ( 2.2% ) 2 ( 2.1% ) 
Other 6 ( 1.6% ) 3 ( 1.1% ) 3 ( 3.1% ) 
Unknow 1 ( 0.3% ) 1 ( 0.4% ) 0 ( 0% ) 

Ci ga r et te smoking status 
Former 171 ( 46% ) 135 ( 50% ) 36 ( 38% ) 
Curre n t 197 ( 54% ) 137 ( 50% ) 60 ( 62% ) 

Pack years of smoking 58 ( 46, 80 ) 57 ( 45, 80 ) 60 ( 49, 84 ) 
H ist o lo gy 

Ade noca rcinoma 185 ( 50% ) 137 ( 50% ) 48 ( 50% ) 
Squamous cell carcinoma 73 ( 20% ) 50 ( 18% ) 23 ( 24% ) 
Large cell C = carcinoma 16 ( 4.3% ) 9 ( 3.3% ) 7 ( 7.3% ) 
Ade nosqua mous ca rcinoma 8 ( 2.2% ) 3 ( 1.1% ) 5 ( 5.2% ) 
Neuroe ndocrine/Ca rcinoid tumors 1 ( 0.3% ) 1 ( 0.4% ) 0 ( 0% ) 
B ronchioloalv e ola r ca rcinoma 70 ( 19% ) 59 ( 22% ) 11 ( 11% ) 
NS CL C NOS 15 ( 4.1% ) 13 ( 4.8% ) 2 ( 2.1% ) 

Patho lo gic stage 
IA 230 ( 62% ) 188 ( 69% ) 42 ( 44% ) 
IB 49 ( 13% ) 36 ( 13% ) 13 ( 14% ) 
IIA 11 ( 3.0% ) 8 ( 2.9% ) 3 ( 3.1% ) 
I I B 39 ( 11% ) 26 ( 9.6% ) 13 ( 14% ) 
I I IA 33 ( 9.0% ) 13 ( 4.8% ) 20 ( 21% ) 
I I I B 3 ( 0.8% ) 1 ( 0.4% ) 2 ( 2.1% ) 
IV 3 ( 0.8% ) 0 ( 0% ) 3 ( 3.1% ) 

Radiothe ra p y 27 ( 7.3% ) 9 ( 3.3% ) 18 ( 19% ) 
Che mothe ra p y 83 ( 23% ) 49 ( 18% ) 34 ( 35% ) 
Surgery type 

W edge/MultiplewW edge resection 45 ( 12% ) 30 ( 11% ) 15 ( 16% ) 
Segme n t ect omy 14 ( 3.8% ) 8 ( 2.9% ) 6 ( 6.2% ) 
Lobectomy 287 ( 78% ) 222 ( 82% ) 65 ( 68% ) 
Bilobectomy 15 ( 4.1% ) 9 ( 3.3% ) 6 ( 6.2% ) 
Pneumonectomy 7 ( 1.9% ) 3 ( 1.1% ) 4 ( 4.2% ) 

Asthma 27 ( 7.3% ) 18 ( 6.6% ) 9 ( 9.4% ) 
Bronchitis 35 ( 9.5% ) 23 ( 8.5% ) 12 ( 12% ) 
COPD 39 ( 11% ) 24 ( 8.8% ) 15 ( 16% ) 
Di abe tes 33 ( 9.0% ) 20 ( 7.4% ) 13 ( 14% ) 
Emp hys ema 48 ( 13% ) 32 ( 12% ) 16 ( 17% ) 
He art dise ase 52 ( 14% ) 35 ( 13% ) 17 ( 18% ) 
Hype rte nsion 134 ( 36% ) 98 ( 36% ) 36 ( 38% ) 
Prior pneumonia 77 ( 21% ) 53 ( 19% ) 24 ( 25% ) 
Obstructive lung dis eas e 88 ( 24% ) 58 ( 21% ) 30 ( 31% ) 
Note . 1 Median ( IQR ) ; n ( % ) 
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os t prevale n t comor bid ity ( 36% ) , follow e d b y obs tructive lung
is eas e ( 24% ) and prior pneumonia ( 21% ) . 
To extract fea tur es fr om CT s can s, we fo llow e d the im age pro-

e ssing pipe l ine as outl ined in Fi gure S2 in the Supplemen ta ry
aterial . We firs t re mov e d noise from the im age s throu gh

ray-scale normalization and adaptive histogram equalization.
e then norm alize d the voxel in te nsity of each image to a

 ta nda rd ra nge of 0 ( b l ack ) –255 ( white ) units and improv e d
he con tras t with ada ptive his togra m equalization. We next
de n tified the regions of in te res ts ( ROIs ) a nd segme n ted the
umor region s bas ed on their location and size. We used pyra-
 iom ics to ex tract tex tur e fea tur es fr om the ROI s, including
rs t-orde r features, sha pe-based fea tur es, a nd hi ghe r-orde r fea-

ures ( Am adas un and King, 1989 ) . We applie d im age filtration
sing the Lap l aci an of Gaus si an filter and a 3D LBP-based
lte r; the La p l aci an of Gaus si an filter highlights areas of gray

ev el ch an ge ( Kon g et al., 2013 ) , and the 3D LBP-based
lt er comput es local binary pa t terns in 3D using spherical

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad024#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad024#supplementary-data
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FIGURE 3 Estim ate d Nonlinea r Function a nd Gradie n ts usin g NLST: The gra die n ts for ̂  g of age, BMI, a nd pack yea rs smok ing hi story 
s tratified b y ge nde r a r e plot ted in ( a ) , ( b ) , and ( c ) . ̂  g of ag e, BMI, and pack ye ars of smok ing i s plotted in ( d ) and ( e ) . The othe r va riables a re 
fixed at their s amp le mean s ( for continuous v ari ab le s ) or mode s ( for categor ical var iables ) . 

FIGURE 4 Prediction Pe rforma nce of 100 Expe rime n ts using Data from the National Lung Ca nce r Scree n Trial: during each expe rime n t, 80% 

d ata i a re ra ndomly sele cte d as training d ata, and 20% d a ta ar e sele cte d as te sting dat a. The cen s oring rat e in the t e sting dat a and training dat a are 
c ontrolle d to be the same as that in the entire popul ation . 
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har monic s ( Banerj ee e t al., 2012 ) . A total of 320 imag e fe a tur es
w ere extracte d. 

To compare the prediction and selection a ccura cy of the Pe-
n alize d DPLC with other competing methods, we conducted
100 expe rime n ts. In each expe rime n t, w e tune d the n umbe r
of hidde n laye rs a nd the n umbe r of neurons in each hidden
laye r ove r the grids of [1, 2, 3, 4] and [2, 4, 8, 16], re spec -
tiv ely, when c onstructing the DNN, and randomly divided the
data into 80% for training and the remaining 20% for test-
ing. To ens ure th at the cen s oring rate in the training a nd tes t-
ing data rem aine d the same as in the entire population, we
split the data by stratifying the vital status of the patie n ts.
Similar to the simulation study, we tuned the n umbe r of hid- 
de n laye rs a nd the n umbe r of neurons in each hidden lay- 
e rs ove r the grid of [1, 2, 3, 4] and [2, 4, 8, 16], re spec -
tively. 

Figure 3 a–f i l lustrate the estim ate d effe cts of age, BMI, and 

pack years of smoking while holding other v ari ab les con stant 
at their mean ( for continuous v ari ab les ) or mode ( for categor- 
ical v ari ab les ) , as deriv e d from the estim ate d ̂  g function . Thes e
con tour plots clea rly reve al the nonline ar r ela tionships betw e en 

age, BMI, and pack years of smoking and survival. The gradients 
of ̂  g for age, BMI, and pack yea rs, s tratified b y ge nde r, a r e pr e-
se n ted in Fi gur e 3 a–c, r efle cting the local ch ange in the log h az-
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rd for small changes in the corresponding v ari ab les. Figure 3 a
nd c exhibit positive gradie n ts for age and pack year s, ind icat-
ng that mortality increases with increasing age and pack years,
onsis te n t with the litera tur e ( Tindle et al., 2018 ) . In contrast,
igure 3 b shows that BMI has a prote ctiv e effe ct on patie n t sur-
ival, in agree me n t with the obesity pa r ado x ( Lee and G iov an-
uc ci, 2019 ) . More ov er, w e o bs erv e th at gender h as a si gnifica n t

mpa ct on lun g ca nce r surv ival. A s see n in the gradie n t figures,
ale patie n ts exhibit a s teepe r increase in mortality risk com-

ared to female patients for small increments in age and pack
e ars, as sho wn in Figure 3 a and c. On the other hand, Figure 3 b
i ghli gh ts that a n increas ed B MI has a s tronge r prote ctiv e effe ct

or fe male patie n ts compa red to male patie n ts, consis te n t with
revious findings of better survival outcomes for female patie n ts
 Vis bal e t al., 2004 ) . 
The Pen alize d DPLC method h as sele cte d 5 radiomic fea-

ures as risk factors: large depe nde nce low gray level emphasis
 LDLGLE ) , la rge a rea e mp hasis ( LAE ) , l a rge a rea low gray level
 mphasis ( LALGLE ) , clus te r shade, a nd con tras t. Fi gure S3 in
he Supplemen ta ry Mate rial de mons tra tes the r epr oducibility of
ea tur e selection by the Pen alize d DPLC and the hazard ratios
or the sele cte d fea tur es. LDLGLE ( HR: 1.07 ) and cluster shade
 HR: 1.09 ) were selected 71 and 57 times out of 100 exper-
me n ts, respe ctiv ely. A lthough LA LGLE ( Frequency: 51, HR:
.02 ) a nd con tras t ( Freque ncy: 41, HR: 1.02 ) we re se lected le ss

reque n tly tha n the othe r textur e fea tur es, they wer e sti l l more
reque n tly selected by the Pen alize d DPLC. 

The sele cte d radiomic fea tur es h av e bio lo gical si gnifica nce.
DL GLE and LAL GLE r epr ese n t the exte n t of low voxel in te n-

it ies or soft-t issue a t te n ua tion, indica ting the presence of lym-
hatic or vascular invasion ( Higgins et al., 2012 ) ; LAE, clus te r
h ade, and c ontrast quantify the rou ghne s s and he tero geneity of
extures ( Am adas un and King, 1989 ) . 

As shown in Figure 4 , the median C-Index for Pen alize d
PLC is 0.708 ( IQR: 0.043 ) , outperforming the other com-

e ting me thods . D e ep Survival ( Me dian: 0.672, IQR: 0.065 ) ,
a ndom Fores t ( Media n: 0.656, IQR: 0.080 ) , a nd Cox Boos t-

ng ( Median: 0.668, IQR: 0.066 ) all had better prediction per-
orm anc e th an the SCAD-pen alize d Cox model ( Median: 0.655,
QR: 0.068 ) and the SC AD-penal ized partially linear Cox model
 Median: 0.633, IQR: 0.065 ) . 

6 D I S  C U S S  I O N 

o address the analytical needs of the National Lung Screening
ri al ( NLST ) , we propos e the Pen alize d DPLC model, which

im ulta ne ously sele cts and models the effects of prognostic ra-
iomic fea tur es . Our adopte d pa rtial linea r mode l assume s a log-

inear r ela tionship betw e en radiomic fea tur es and hazar ds, al-
owing us to use the SCAD penalty to ide n tify importa n t im-
g e fe a tur es. Clinical fea tur es with known as s oci ation s with sur-
ival outcomes are modeled using a nonpa ra metric function to
c c ount for their nonlinear effe cts . D espite this structured ap-
roach, w e m aint ain the flexibility to mode l se le cte d radiomic

ea tur es using nonpa ra me tric function s like the clinical fea tur es.
ur method provides a c onv e nie n t mea n s to exp lor e new pr e-
 ictor s whi le ful ly cha racte rizing the impact of e st abli shed ri sk
actors. 
The re is si gnifica n t pote n tial for future work. Our modeling
ra mework ca n be exte nde d to inc orporat e alt ern ativ e pen alties,
uch as the LAS SO a nd MCP ( Tibshira ni, 2011 ) . We a re cur-
e n tly ut iliz ing a DNN est im ator with a fixe d a nd mode rate di -

en sion, which is suitab le for our d atas e t where the n umbe r of
linical v ari ab les is moderate. It is feasible to develop DNN es ti -
 ators th at can h andle high-dimension al pre d ictor s . More ov er,

ua n tifying the unce rtain ty of the es tima tes r e mains a si gnifica n t
hallenge. 

S U P P L E M E N TA  RY  M AT E R I A  L S  

upple me n ta ry mate rial is available at Biometrics online. 
Figur es, pr oofs of theorem s, simul ation d at a, and code s to run

he simul ation s as r efer enc e d in Sections 3 –5 are av ail ab le with
his pa pe r at the B iometrics we bsite on Oxford Aca de mic . 
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