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ABSTRACT

Lung cancer is a leading cause of cancer mortality globally, highlighting the importance of understanding its mortality risks to design effective
patient-centered therapies. The National Lung Screening Trial (NLST) employed computed tomography texture analysis, which provides ob-
jective measurements of texture patterns on CT scans, to quantify the mortality risks of lung cancer patients. Partially linear Cox models have
gained popularity for survival analysis by dissecting the hazard function into parametric and nonparametric components, allowing for the ef-
fective incorporation of both well-established risk factors (such as age and clinical variables) and emerging risk factors (eg, image features)
within a unified framework. However, when the dimension of parametric components exceeds the sample size, the task of model fitting becomes
formidable, while nonparametric modeling grapples with the curse of dimensionality. We propose a novel Penalized Deep Partially Linear Cox
Model (Penalized DPLC), which incorporates the smoothly clipped absolute deviation (SCAD) penalty to select important texture features and
employs a deep neural network to estimate the nonparametric component of the model. We prove the convergence and asymptotic properties
of the estimator and compare it to other methods through extensive simulation studies, evaluating its performance in risk prediction and feature
selection. The proposed method is applied to the NLST study dataset to uncover the effects of key clinical and imaging risk factors on patients’
survival. Our findings provide valuable insights into the relationship between these factors and survival outcomes.

KEYWORDS: CT texture analysis; deep neural network; error rate; feature selection; regularization; selection consistency; survival prediction.

1 INTRODUCTION

Even with the advent of modern medicine, lung cancer mortality
remains high, with a S-year survival rate lower than 20% among
advanced patients (Bade and Cruz, 2020). Identifying risk fac-
tors relevant to lung cancer survival is essential for designing
cancer prevention programs (Barbeau et al., 2006) for preven-
tion and early detection. The National Lung Cancer Screen Trial
(NLST) was designed to investigate the use of computed to-
mography (CT) for lung cancer detection, enrolling more than
53000 participants from August 2002 through April 2004, with
about 26 000 randomly assigned to receive CT (Team, 2011).
In addition, clinical information, such as age, gender, smoking
history, and cancer stage, was collected for each patient. The
study found a 20% decrease in lung cancer mortality for patients
screened by CT. It is of interest to examine whether CT confers
valuable features to help predict lung cancer survival and design
efficient disease management strategies. CT texture analysis pro-
vides objective assessments of the texture patterns of the tumor
by evaluating the relationship of voxel intensities (Lubner et al.,
2017). Identifying reproducible and robust texture features in

the presence of other clinical factors affecting patients’ outcomes
remains a challenge due to the sensitivity of radiomic features
to factors such as scanner type, segmentation, and organ mo-
tion (Lambin et al., 2017).

Partially linear Cox models have gained popularity as a use-
ful extension of the classic Cox models (Cox, 1972) for survival
analysis. This model offers more flexibility in the risk function by
separating the hazard function into parametric relative risks for
certain covariates and nonparametric relative risks for the others
(Huang, 1999). In the NLST analysis, we have chosen to adopt
this model by assigning the parametric risks to the texture fea-
tures and the nonparametric risks to the clinical features such
as age, gender, and race. This setup provides a clear interpreta-
tion of texture features as in regular Cox models, facilitates the
selection of crucial radiomic features, and offers extra flexibil-
ity in modeling the effects and potential interactions of the well-
known clinical features.

To estimate the nonparametric risk function, researchers have
proposed various methods, such as polynomial splines (Huang,
1999). Recently, Zhong et al. (2022) made a breakthrough by us-
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ing deep neural networks (DNN) to estimate the nonparamet-
ric risk function in partially linear Cox models and established
an optimal minimax rate of convergence for the DNN-based esti-
mator, and showed that DNN approximates a wide range of non-
parametric functions with faster convergence. However, the per-
formance of this method remains unknown when dealing with a
large number of texture features, which is the case in the NLST
study.

In many applications, the neural network has proven to be
powerful for approximating complex functions by providing ac-
curate approximations of continuous functions (Leshno et al,,
1993). Under some smoothness and structural assumptions,
Schmidt-Hieber (2020) showed that DNN estimators may cir-
cumvent the curse of dimensionality and achieve the optimal
minimax rate of convergence. With limited samples, however,
a complex DNN can still lead to overfitting (Srivastava et al,,
2014). Early stopping during training (Li et al., 2020), and
adding dropout layers (Srivastava et al., 2014), have been pro-
posed to address overfitting, but none has been studied in the
survival context.

To fill this gap, we propose a Penalized Deep Partially Linear
Cox Model (Penalized DPLC). This framework identifies valu-
able radiomic features and models the complex relationships be-
tween survival outcomes and established clinical characteristics
such as age, body mass index (BMI), and pack-years of smok-
ing. The main contributions of our work lie in the proposed
penalized estimation, in the context of DNN, to select texture
features that influence survival outcomes while avoiding overfit-
ting, combining feature selection, and deep learning in one solu-
tion. Second, we demonstrate the asymptotic properties of the
estimator by determining its convergence rates and proving se-
lection consistency. Finally, we perform comprehensive simula-
tions to validate the proposed model’s theoretical properties and
compare it with the other methods in risk prediction and feature
selection.

In the following, Section 2 introduces the Penalized DPLC
model and Section 3 presents an efficient alternating optimiza-
tion algorithm. Theoretical results are provided in Section 4,
where we prove the convergence rate and variable selection
consistency. In Section S, we conduct simulations to evaluate
the performance of the Penalized DPLC and compare it with
other state-of-the-art models. We apply the Penalized DPLCto a
dataset from the NLST study in Section 6 to identify important
texture features related to patient survival.

2 SCAD-PENALIZED DEEP PARTIALLY
LINEAR COX MODELS

A partially linear Cox model assumes a hazard function:

w(t1x,2) = Ro(t) exp(Bg x + go(2)), (1)

where x € R? and z € R are two covariate vectors, and Ao (t)
is the baseline hazard. This class of models contains the ordi-
nary Cox proportional hazards model as a special case if go(z)
is a linear function of z. In NLST, x represents texture features
and z represents known clinical features such as age BMI, gender,
race, and cancer stage. The coeflicients measuring the impact of
texture features are represented by 8, while the nonparametric
risk function of clinical features is represented by gy and is to be

approximated by a function in a DNN. We consider a practical
setting where p, the dimension of x, can exceed the sample size,
which necessitates variable selection. As such, f, is an sg-sparse
vector, that is, || Byllo = sg < p. On the other hand, the impor-
tant clinical features have a moderate dimension of , and their
complex impacts are to be modeled by a DNN.

As defined in Schmidt-Hieber (2020) and Zhong et al.
(2022), a DNN with architecture (L, p) has L + 1 layers, in-
cluding an input layer, L — 1 hidden layers and an output layer,
and a width vector p = (py, p2, - - - » pr+1) whose elements are
the numbers of neurons in the corresponding layer. In this con-
text,a DNN has 2 or more hidden layers, while shallow networks
are those with only 1 hidden layer (Schmidt-Hieber, 2020). In
our case, the dimension of the input features, p; = r, and the di-
mension of output, py +; = 1. An (L + 1)-layered neural net-
work with an architecture (L, p) can be expressed as a composite
function, g : R” — R!, with L folds, thatis, g = gr.0g; — 10---0g,
where ‘0’ is the functional composition, and the Ith fold function,
g(-) = 01(W; - +b;) : R — RP+t with [ =1, ..., L. Here,
Wiisap; | X pyweight matrix, b;isap; | 1-dimensional bias vec-
tor and ‘-’ represents an input from layer /. We use © to denote
the set of parameters for the neural network containing all the
weight matrices and bias vectors to be estimated. The function
o1 : RP+1 — RP#1 js an activation function, possibly nonlinear,
that operates component-wise on a vector.

Various activation functions exist, with rectified linear units
(ReLU), that is, max(0, a), being a commonly used choice. Our
primary emphasis lies in neural networks employing ReLU func-
tions across all layers, although these can be readily modified.
Moreover, DNNs with complex network structures and a large
number of parameters are prone to overfitting. This work con-
centrates on a class of DNNs with sparsity constraints on the
weight and bias matrices (Zhong et al., 2022; Schmidt-Hieber,
2020):

G(L,p,s, G)

L
={geG(L.p): Y _IWillo+ IIbillo < 5. liglloo < G}.

I=1

Here, s € N (the set of positive integers), G > 0, ||glloc =
sup{lg(z)| : z € D C R’} is the sup-norm of function g, and
D is a bounded set. In implementation, directly specifying
or determining s, which controls network sparsity, is not the
norm. Instead, a commonly employed technique is a “dropout”
procedure within the hidden layers, which randomly removes
hidden neurons with a defined probability, referred to as the
dropout rate (Srivastava et al.,, 2014). To determine an appro-
priate dropout rate, we conduct a grid search as done in our later
simulations and data analysis.

With right censoring, we let U; and C; denote the sur-
vival and censored times for subject i, respectively. We ob-
serve T; = min (U, C;), and A; = 1(U; < C;), where 1(-)
is the indicator function, and assume the observed data D =
{((T;, Aiyx;,2;),i=1,...,n} are independently and identi-
cally distributed (IID). To estimate g in (1), we suggest using
a DNN, denoted as G(L, p, s, 00), which takes z € R” as input
features and produces a scalar output. To achieve variable selec-
tion among X, we propose a penalized estimation approach.
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To proceed, we define the partial likelihood as
1 n
L(B.g) = . Z Ai[ﬂTxi + g(z;)
i=1

—log { Z exp (ﬂij + g(zj)) }], (2)

jER;

where R; = {j: T; > T}, the at-risk set at time T}, and g €
G(L, p. s, 00). We would estimate 8 and g(-) by maximizing
(2), where, to accommodate sparsity, we propose to use the
SCAD penalty (Fan and Li, 2001; 2002) defined as

(ah — 1B+

POBN = 21081 < 2) + <= 50

1081 > 1)},

a> 2,

yielding a penalized log partial likelihood, PL(B,g) =
(B, g) — Z?:l p,.(IB;1). The SCAD penalty is indeed a
quadratic spline function with knots at A and a), where A > 0 is
viewed as the tuning parameter controlling the sparsity of 8, and
is assumed to converge to 0 as n — 00, though for simplification
we omit its dependence on .

We estimate (f,, go) by maximizing PL(f, g), or, equiva-
lently, minimizing the loss function which is defined as the neg-
ative penalized log partial likelihood:

P
Q(B.8) =a(B.e) + Y _ (B, (3)

j=1

where q(B, g) = —£(B, g). That is, the estimate of (B, go) is

obtained via
(B,g) =arg min Q(B,g). (4)
B.geRPxG

We present below an optimization algorithm for solving (4)
alternately, which uses the adaptive moment estimation (Adam)
algorithm to estimate g given an estimate of 8, and, subsequently,
uses the resulting estimate gto estimate 8 via coordinate descent.

0
Step 1. Initialize 8 with E( ).

k—
Step 2. Denote by E( K the estimate of 8 at the (k — 1)th

~(k—1)
iteration. Solve (4) for g, with B fixed at f8 , by

using Adam (Algorithm 1), where g% denotes the
current estimate.

Step 3. With g fixed at?k), solve (4) for B by using the coor-

~(K)
dinate descent algorithm (Algorithm 2), where f
denotes the estimate at the current iteration.

We repeat steps 2 and 3 until convergence. In step 2, we employ
an adapted Adam algorithm (Algorithm 1), a form of stochas-
tic gradient descent (Kingma and Ba, 2014), to estimate ® (the
weight matrices and bias vectors) in the neural network. The
algorithm is adaptive as the update of © at each iteration step
stems from adaptive estimation of the first and second moments
of the stochastic gradients of the empirical loss (Kingma and Ba,
2014). We initialize the biases to be 0 and use Xavier initialization
to initialize the weights (Glorot and Bengio, 2010). To ensure
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numerical stability, we add a small €y > 0 to the denominator,
and the update for each parameter is determined by the adaptive
estimates for the first and second moments of the gradients of the
empirical loss at each iteration. Algorithm 1 distinguishes from
the traditional Adam method in that it updates the parameters in
the neural network while fixing f at its previous iteration, rather
than updating all parameters simultaneously. When implement-
ing Algorithm 1, we do not require convergence with a given up-
date of B. In our experience, several iterative steps would be suffi-
cient. Also as a large number of iterations may lead to overfitting
of DNN, early stopping may prevent overfitting and can produce
a consistent network (Ji et al., 2021).

Algorithm 1: Adam in alternating optimization

~(k=1)
IHPUt ryry, Y, ﬂ )
1 Initialize m(® « 0,10 « 0t « 1, e©
2 while |0 — @], > (do
~(k—
3 m®) «— r - m=1) 4 (1—rp)- V@Q(ﬂ( 1),?t))
o | 0O em ) L (1) {V(_)Q(’lg\(kfl)’:g%t))}z
s | M <« m®/1 =), 5 <« vO/(1—+)
e | 8O < 8D i) (VED 4 )
7 gt ~—t+1
Output:?k) <~ g(- | @(t))
8 Note: the square, division and square root from lines 3 to 6
are operated elementwise.

Step 3 carries out a coordinate descent algorithm. The advan-
tage of coordinate descent is that the parameters, 8, are updated
individually, where the closed-form solution for each parame-
ter is available, greatly facilitating the computation (Breheny and
Huang, 2011). Specifically, let§ = Xf € R", where X=(x, ...,
x,) " is the covariate (x) matrix of the n subjects in the data. We
denote the gradient and Hessian of the function q with respect to
B and & given the current estimate of the neural network, ?k) ,as
9 (B:g), 0" (B; g%), q' (&), and q" (& g)). To simplify
notation, we will omit ?k) in the following. The function q(f)
is approximated using a second order Taylor expansion around

B,
9(B) ~ (") + (B—b®) ¢ (6®)
+(B—b)Tq" (V) (B-b")/2

= 0GE") -9 EH0E)) -9
+c@”.50),

PONIENO) O NEEIFAG) 2() =~
where y(§ ) =& —q'(§ )7'q(§) and C(§ ")
does not depend on B. The equalities hold as ¢'(B) = X' ¢'(§)
and q"(B) =X"q"(£)X by the chain rule. Then the loss
function (3) at iteration ¢ can be approximated by the pe-

nalized weighted sum of squares, Q(f) ~ %(y(?t)) —

5T ENGEY) - o+ @ B)+ X0 p(B)).

To speed up the algorithm, we may replace q"(/g(t)) by a
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diagonal matrix, W(E(t) ), with the diagonal entries of q” (E(’) ):

WE ) =" €
L0450 S e E04g _ 2 A<z>+§<k>)2
2 e |
where C,, = {i: T; < T,,}. In this case,
(’\(f))m —Af:)

£(t) | k)
1 e&m t8m
t - -k
W(E( ))m m { i€Cy, Z]ER eg %)

In the iteration of coordinate descent, the parameters are up-
dated individually; each parameter has a closed-form solution,
making the computation manageable. We employ an adaptive
rescaling technique (Breheny and Huang, 2011); the following
SCAD-thresholding operator returns the univariate solution for
the SCAD-penalized optimization:

S(t) if |h| <21
. _ S(h a)»/(a 1)) .
fscap(h,v;a, 1) = TG if21 < |h] < ar
h/v, if || > aA,

where S( -, 1) is the soft-thresholding operator with a thresh-
old parameter, . > 0 (Donoho and Johnstone, 1994), that is,
S(h, &) = sign(h)(|h| — 1)+. Here, the sign function sign(h)
equals h/|h| if h # 0, and 0 if h = 0; (h); = max (h, 0). Let
r=y(§) —&andv; = x;rW(g)x}-. We define the following in-

put at the tth iteration, that is, h; = x;rW(IS\(t) )r+ v,-ﬁ](t). The
coordinate descent algorithm is presented in Algorithm 2.

Algorithm 2: Coordinate Descent in alternating optimiza-
tion

ta, A, b = :é(k_l) RN

1 Initialize t < 1 /’;:(0) <~ Xb©® yandr < y(& 0))

2 while [b® — bV, > (do
3 for;<—1topdo

Input
200

4 h; <—x}TW(/§<t 1)) +vj/3](t71)
5 B\;t) <~ fSCAD(hj7 Vi, a, 1)

6 r<r-— (,B\](t) — ,B\](tfl))xj

7 E(t) « Xb®

s |t t+1

Output: ’ﬁ(k) o NO

3 REGULARITY CONDITIONS AND
STATISTICAL PROPERTIES

T_ T
We impose sparsity on By = (Bio, - - ., Bpo) (ﬂw, ﬂzo)
by, without loss of generality, assuming f,, = 0. We restrict
the true nonparametric function gy to belong to a composite

Hélder class of smooth functions, H(q, «, d, H, M), where the
g composition functions are Holder smooth functions with pa-
rameters @ = (a1, ..., @4) (the orders of smoothness) and M
(bound). The concept of the composite Hélder smooth func-
tion has been widely used to facilitate the discussion of the theo-
retical properties of DNN (Schmidt-Hielgver, 2020; Zhong et al,,
2022). Here,d = (dy, ..., dy) andd = (d,, ..., d,) are 2 types
of dimension parameters; the former is the dimension of input
at each ‘layer,” while the latter quantifies the intrinsic dimension
of the arguments of activation functions at each layer (Zhong
et al,, 2022), often much smaller than the feature dimension at
each layer. We will prove that the convergence rate of DNN de-
pends on d, instead of d, meaning a faster convergence rate than
the other nonparametric estimators. Details can be found in the
Supplementary Materials.

Throughout, £ denotes the expectation of random vari-
ables; unless otherwise specified, for any function (random or
nonrandom) f and a random vector, v, we define E{ f(v)}: =
[ f(t) £, (t)dt, where f,(-) is the density function of v. Thus,
the expectation is taken with respect to only the arguments
of the f function. For a vector a, define ||a|| = (aTa)2, and
for a function g, define ||g||i2 = E{g*(z)}. We denote &; =
o HZ:i+1(ak A1) and y, = maxi—; ., n~ @/ Qatd)
sume the following.

and as-

1. Considering a class of s-sparse DNNs or G(L,p,s, G),
we assume L = O(logn), s = O(ny,*logn) and ny? <
minj=y, L p1 < Maxj=y L p1 < 1

2. With slightly overuse of notation, denote by x and z the
random vectors underlying the observed IID copies of x;
and z;, respectively. Assume (x',z')" take values in a
bounded subset, D, of RP*" with a joint probability den-
sity function bounded away from zero, and f lies in a
compact set, thatis., 8, € { € R? : ||B]| < B}.

3. Assume that the nonparametric function g belongs to
a mean 0 composite Holder smooth class, that is, gy €

={ge H(q, @, d,d, M) : [E{g(z)} = 0} and the
matrix E{x — E(x|z)}®?*is nonsingular, where a®> =aa"
for a column vector a.

4. Let T < 00 be the maximal followup time. We assume
that there exits a § > 0 such that P(A = 1|x,z) > § and
P(U > t|x,2) > § almost surely.

Condition 1 restricts the architecture of neural networks, bal-
ancing the network’s flexibility with the estimation accuracy
(Zhong et al.,, 2022). Condition 2 is commonly assumed for
semiparametric partially linear models (Horowitz, 2009). The
Holder smoothness in Condition 3 ensures that the function can
be approximated by a DNN, while the zero expectation assump-
tion yields the identifiability of the DPLC (Zhong et al., 2022).
In Condition 4, P(A = 1|x,z) > § specifies that there is nonzero
probability of observing an event,and P(U > T|x,z) > § ensures
that there is nonzero probability that some subjects are still alive
at the end of the study, both of which guarantee that the partially
linear Cox model can be estimated using the observed data.
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With a, = max{p} (IBjol : Bjo # 0)} and b, =
max{p} (|Bjol : Bjo # 0)}, the following theorem establishes

the existence and the convergence rates of 8 and g.

Theorem 1 Under Conditions 1-4, and if b, — 0 (with properly
chosen M), then there exists a local maximizer (B8, g) of PL(B, g)
satisfying E{g(z)} = 0, such that

”ﬂ - ﬂo” = Op(yn 10g2” + an)a ||§_ gOHL2
= 0,(Vx log2 n+a,).

Remark 1 The theorem shows that the rate of convergence does not
depend on the number of input features, but rather on the intrinsic
dimension and smoothness of the function go, unlike other nonpara-
metric estimators whose convergence rate also depends on the feature
dimension. As a result, the DNN estimator may have an advantage
when the intrinsic dimension of the true function is low.

) ~ =T =T
We now show that the estimator 8= (B,,B,)" for
(ﬁ%,ﬂ;—o = OT)T possesses a selection consistency prop-
erty, that is, 8, = 0 with probability going to 1.

Theorem 2 Assume that liminf,,  liminf, o+ p} (u)/A >
0, and XA is chosen such that a, = O(y,log’n), and
Amin (n'/?, {y,,logz(n)}_l) —> 00, and the conditions of
Theorem 1 hold. Then with probability tending to 1, the estimator 8
in Theorem 1 must satisfy /ﬂ\z =0.

Remark 2 Both theorems apply to a broad range of penalty func-
tions. In particular, as shown in Fan and Li (2001), the SCAD
penalty function satisfies liminf,_, o liminf, o+ p} (u)/A > 0,
andas . — 04, a, = Owhen nis sufficiently large. Consequently,
if A converges to 0 at an appropriate rate, the SCAD function guar-
antees both the convergence rates (Theorem 1) and variable selection
consistency (Theorem 2).

4 SIMULATIONS

We conducted simulations to assess the finite sample perfor-
mance of our proposed estimator by comparing it with the
SCAD-penalized Cox Model (Fan and Li, 2002), SCAD-
penalized Partially Linear Cox Model using polynomial
splines (Hu and Lian, 2013), Cox Boosting (Binder et al.,
2009), Random Forest (Ishwaran et al, 2008) and Deep
Survival Model (Katzman et al., 2018). Fori = 1, ...,n, we
generated (x;, z;) from a multivariate Gaussian distribution,
1 02...02

NP_H{O,( )}, and then generated the true

021 ... 1
survival time U; from an exponential distribution with a hazard
wexp(Box; + go(z:)), where p was tuned to adjust for cen-
soring rate and 8, € [R¥ was a sparse vector simulated from the
uniform distribution. The number of nonzero elements in f,
was sg, chosen to be much less than the dimension of ;. The
censored time C; was simulated from [0, C], where C was
chosen so that the censoring rate in the simulated data is around
30%.
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We simulated data sets with varying sample sizes and feature
sizes. Specifically, we fixed the clinical feature size, r, at 8 and the
number of nonzero radiomic features, sg, to be 10, while vary-
ing the training sample size, 1, to be 500 or 1500 and radiomic
feature size, p, to be 600 or 1200. We assessed the performance
of the model under these four scenarios with different numbers
of training samples and feature sizes. For each simulation setup
or configuration, a total of 500 independently simulated datasets
were generated.

We set go : R® — R to be a linear or nonlinear function,
respectively. That is, go(z) = e}z with &y € R® generated
from U(—2,2) or 0.68exp (z1) — 0.4Slog{(z — 23)*} +
0.32sin (z425) — 0.45(z — 27 + z3)* — 0.32. We tuned param-
eters for each method on each simulated dataset. Specifically,
to identify the neural network structure, we tuned the number
of hidden layers and the number of neurons in the hidden lay-
ers over a grid of values, that is, 1-4 for the number of hidden
layers and 2-8 for the number of neurons in the hidden layers,
and tuned the dropout rate and the learning rate from 0.3 to 0.5
and from 0.005 to 0.02, respectively. For the SCAD penalty, we
set a = 3.7 as suggested by Fan and Li (2001) and used grid
search over [0.05,5] to find the best 2»\ based on the Bayesian
Information Criterion (BIC): —2nf(,g) + logn - sp, where
$p is the number of nonzero coefficient estimates; for illustra-
tion, Figure S1(a and b) in the Supplementary Material dis-
play the selection of A for SCAD-Penalized DPLC on 10 sim-
ulated datasets with (n, p) = (500, 1, 200) and the solution
path for B with one randomly selected dataset. We tuned for
Cox Boosting by determining the penalty value that yielded
an optimal count of boosting steps (with a maximum of 200).
For Random Forest, we tuned the terminal node size from
1to 150.

To visually evaluate the accuracy of the DNN estimator in ap-
proximating go when it is nonlinear, Figure 1 displays contour
plots of the true function and the average DNN estimates based
on 500 simulated datasets with #, p varying from 500 to 1500 and
from 600 to 1200, respectively. When creating these plots, we
fixed the values of the last 6 arguments of the function at their
population means and varied the first 2 arguments. The results
indicate that the DNN estimates provided a good approximation
of the true function, with increasing accuracy observed as n in-
creased for a fixed value of p.

Figure 2 compared the Penalized DPLC’s prediction perfor-
mance with the competing methods using the C-Index as the
criterion. When gy is linear or the ordinary Cox model holds,
three Cox model-based methods, Cox-SCAD, SCAD splines,
and Boosting, excelled with a highest median C-Index of approx-
imately 0.92 across various combinations of n and p. Our pe-
nalized DPLC yielded a competitive median C-Index, ranging
from 0.83 to 0.87 at n = 500 and improved to 0.89 at n = 1,
500; importantly, it outperformed two nonparametric methods:
Random Forest (median C-Index values: 0.77-0.80) and Deep
Survival Model (0.70-0.89). When gy is nonlinear, our Penal-
ized DPLC model clearly outperformed the others across vari-
ous n and p. The highest median C-Index of 0.868 [Interquar-
tile range (IQR): 0.011] was achieved with (n, p) = (1, 500,
600). As the feature size increased, the prediction performance
decreased slightly, for example, the median C-Index for Penal-
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n =500 p = 600

n =1500 p = 600

n =500 p =1200

n =1500 p = 1200

FIGURE 1 The Average Estimates of the Nonlinear Function using 500 Simulated Datasets with Varying n, p. The plots are made by varying

the first 2 arguments fixing the other 6 arguments.

ized DPLC decreased from 0.841 (IQR: 0.018) to 0.830 (IQR:
0.032) when the feature size increased from 600 to 1200 with
500 samples. The prediction performance improved with more
samples; the median C-Index for Penalized DPLC rose to 0.865
(IQR: 0.015) when the sample size increased to 1500, compared
to 500 samples with 1200 features.

To evaluate the selection performance, we reported the num-
ber of selected features, false positive number (FPN), false pos-
itive rate (FPR), false negative number (FNN), and false nega-
tive rate (FNR). Let S and S represent the actual and estimated
(ie, the selected features) support oﬂ B, and Card(-) the car-
dinality of a set. Then FPN =ACard(S\8),FPR = FPN/{p —
Card(S)}, FNN = Card(S\S), and FNR = FNN/Card(S).
When go(z) is linear on z, in which case the model assumptions
were satisfied for the SCAD-penalized Cox model with and with-
out polynomial splines, they outperformed the other compet-
ing methods, including the Penalized DPLC (Table 1). How-
ever, the performance of the penalized DPLC was comparable

to them. For example, the 2 penalized Cox models reported an
FPN of less than 1, while the penalized DPLC reported only
0.6 more FPNs on average than them. In addition, the average
FNN, that is, the missed ‘active’ features, of the Penalized DPLC
was only 0.74-2.31 (across various considered scenarios) higher
than the penalized Cox models. On the other hand, the perfor-
mance of the Penalized DPLC was clearly better than Cox Boost-
ing and Random Forest. Cox Boosting tended to select more
features; when (n, p) = (1500, 1200), Cox Boosting reported
an FPN of 33.64 (SE: 0.60), whereas the FPN for the Penal-
ized DPLC was 1.40 (SE: 0.10). For Random Forest, the aver-
age FNN varied from 4.12 to 6.17, compared to 1.33-3.49 for
the Penalized DPLC. The average FPN for Random Forest var-
ied from 3.75 to 6.11, while it was 0.31-1.69 for the Penalized
DPLC.

When gy(z) is nonlinear, the Penalized DPLC outperformed
almost all of the other methods (except for Cox Boosting) in
FNN. Cox Boosting had an FNN of 1.69 (SE: 0.04), while the
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TABLE 1 Selection performance of different algorithms using 500 simulated datasets.

Method Selected Features’ FPN? FPR (%)3 FNN* FNR(%)®
Linear Case

(n, p) = (500, 600) Penalized DPLC 6.90 (0.07) 0.39 (0.04) 0.07 (0.01) 349 (0.04)  34.90(0.39)
SCAD 9.47 (0.19) 0.48 (0.09) 0.08 (0.01) 1.32(0.11)  13.20(1.10)
SCAD spline 9.51 (0.21) 0.69 (0.15) 0.12 (0.03) 1.18 (0.11)  11.80(1.10)
Cox Boosting 48.10 (1.02) 38.75(1.01)  6.57(0.17) 0.65 (0.08) 6.50 (0.82)
Random Forest 9.51(0.21) 4.90 (0.26) 0.83 (0.04) 5.39(0.13) 53.90 (1.29)
(n, p) = (500, 1200) Penalized DPLC 9.90 (0.08) 1.69 (0.09) 0.14 (0.01) 1.79 (0.0s)  17.86(0.49)
SCAD 9.92 (0.08) 0.85 (0.06) 0.07 (0.01) 0.93 (0.04) 9.32 (0.40)
SCAD spline 9.94 (0.08) 0.89 (0.07) 0.07 (0.01) 0.95 (0.04) 9.48 (0.40)
Cox Boosting 49.22 (0.54) 39.91(0.54)  3.35(0.05) 0.69 (0.03) 6.88 (0.34)
Random Forest 9.94 (0.08) 6.11 (0.10) 0.51 (0.01) 6.17(0.06)  61.74 (0.56)
(n,p) = (1500, 600) Penalized DPLC 8.99 (0.08) 0.31 (0.07) 0.05 (0.01) 1.33(0.04)  13.26(0.38)
SCAD 9.34(0.03) 0.01 (0.00) 0.00 (0.00) 0.67 (0.03) 6.68 (0.33)
SCAD spline 9.63 (0.04) 0.22 (0.03) 0.04 (0.00) 0.59 (0.03) 5.88 (0.33)
Cox Boosting 42.68 (0.53) 33.00(0.53)  5.59(0.09) 0.33 (0.02) 326 (0.25)
Random Forest 9.63 (0.04) 3.75 (0.07) 0.64 (0.01) 4.12 (0.06)  41.20(0.63)
(n,p) =(1500,1200)  Penalized DPLC 9.87 (0.12) 1.40 (0.10) 0.12 (0.01) 1.53(0.05)  15.32(0.55)
SCAD 9.23 (0.04) 0.04 (0.01) 0.00 (0.00) 0.81 (0.04) 8.08 (0.39)
SCAD spline 9.65 (0.05) 0.37 (0.04) 0.03 (0.00) 0.72 (0.04) 7.16 (0.37)
Cox Boosting 43.19 (0.61) 33.64(0.60)  2.83(0.05) 0.45 (0.03) 4.46 (0.28)
Random Forest 9.65 (0.05) 4.36 (0.08) 0.37 (0.01) 4.71(0.06)  47.08 (0.65)

Nonlinear Case
(n, p) = (500, 600) Penalized DPLC 11.04 (0.11) 2.52(0.10) 0.43 (0.02) 1.48(0.03)  14.76 (0.29)
SCAD 12.68 (0.19) 4.66 (0.17) 0.79 (0.03) 1.98 (0.05)  19.78 (0.47)
SCAD spline 12.32(0.18) 4.13 (0.16) 0.70 (0.03) 1.81(0.05)  18.08 (0.46)
Cox Boosting 34.73 (0.49) 26.02 (0.48)  4.41(0.08) 1.29(0.04)  12.90(0.38)
Random Forest 12.32 (0.18) 7.27 (0.18) 1.23 (0.03) 4.95(0.06)  49.50(0.59)
(n, p) = (500, 1,200) Penalized DPLC 10.74 (0.13) 2.88 (0.12) 0.24 (0.01) 2.14(0.04)  21.38(0.37)
SCAD 12.89 (0.21) 5.25(0.19) 0.44 (0.02) 236 (0.05)  23.64(0.51)
SCAD spline 17.87 (0.97) 10.02 (0.97)  0.84(0.08) 2.15(0.05)  21.48(0.48)
Cox Boosting 34.90 (0.49) 26.59 (0.47)  2.23(0.04) 1.69 (0.04)  16.94(0.44)
Random Forest 17.87(0.97) 13.16 (0.96)  1.11(0.08) 528 (0.05)  52.84(0.51)
(n,p) = (1500, 600) Penalized DPLC 9.14 (0.04) 0.26 (0.02) 0.04 (0.00) 1.12(0.03)  11.16(0.33)
SCAD 8.76 (0.05) 0.47 (0.03) 0.08 (0.01) 1.71 (0.05)  17.06 (0.4S)
SCAD spline 10.49 (0.11) 1.82 (0.10) 0.31 (0.02) 1.32(0.04)  13.24(0.40)
Cox Boosting 33.12 (0.52) 24.02 (0.51)  4.07 (0.09) 0.90 (0.03) 9.00 (0.34)
Random Forest 10.49 (0.11) 4.08 (0.13) 0.69 (0.02) 3.58 (0.06)  35.84(0.59)
(n,p) =(1500,1200)  Penalized DPLC 9.20 (0.08) 0.94 (0.06) 0.08 (0.00) 1.74 (0.05)  17.40 (0.46)
SCAD 9.04 (0.09) 1.16 (0.07) 0.10 (0.01) 2.12(0.05)  21.20(0.50)
SCAD spline 10.35(0.13) 2.17 (0.11) 0.18 (0.01) 1.83 (0.05)  18.26(0.47)
Cox Boosting 33.20 (0.55) 24.56 (0.54)  2.06 (0.05) 1.36 (0.04)  13.58(0.40)
Random Forest 10.35(0.13) 4.60 (0.13) 0.39 (0.01) 426 (0.06)  42.56(0.61)

Notes: ' The number of true ‘active’ features is set to be ten.

2 False positive number (FPN) is the number of features that are ‘inactive’ but selected by the model as ‘active’ features.

3 False positive rate (FPR) is the FPN divided by the true number of ‘inactive’ features and reported as a percentage (x 100).

* False negative number (FNN) is the number of features that are ‘active’ but selected by the model as ‘inactive’ features.

SFalse negative number (FNR) is the FNN divided by the true number of ‘active’ features and reported as a percentage (x 100). * Reported numbers are means and SEs .

Penalized DPLC reported a comparable FNN of 2.14 (SE: 0.04)
with 500 samples and 1200 features. However, Cox Boosting
had a much higher FPN 0f26.59 (SE: 0.47) compared to Penal-
ized DPLC’s 2.88 (SE: 0.12). The average number of falsely se-
lected features using Penalized DPLC was 0.26-2.88, compared
to 0.47-5.25 for the penalized Cox model. The selection per-
formance of Penalized DPLC improved with more samples and
fewer features, achieving the best performance when (n, p) =
(1500, 600) with an FPR of 0.04% and an FNR of 11.16%.

S APPLICATION

We applied the Penalized DPLC to analyze a dataset from NLST,
investigating what and how CT features were related to the mor-
tality of lung cancer patients. The dataset includes a total of 368
subjects from NLST who were diagnosed with lung cancer and
screened with CT (Table 2). Out of them, 96 patients died dur-
ing follow-up. The median age was 63.5 years old (IQR: 59.0,
68.0), with 55% being male and over 90% being white. Most pa-
tients were in the early cancer stage, and hypertension was the
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TABLE 2 Clinical characteristics of patients from the national lung cancer screen trial.

Characteristic

Overall, N = 368!

Alive, N = 272! Dead, N = 96!

Median follow-up time (days)

2072 (1962,2151)

Age (years) 63.5(59.0,68.0) 63.0 (59.0,67.0) 66.0 (60.0,70.0)
BMI 26.3(24.3,29.2) 26.3(24.3,29.2) 26.1(24.1,29.2)
Gender
Male 201 (55%) 137 (50%) 64 (67%)
Female 167 (45%) 135 (50%) 32 (33%)
Race
White 339 (92%) 251 (92%) 88 (92%)
Black 14 (3.8%) 11 (4.0%) 3(3.1%)
Asian 8 (2.2%) 6(2.2%) 2 (2.1%)
Other 6 (1.6%) 3(1.1%) 3(3.1%)
Unknow 1(0.3%) 1(0.4%) 0 (0%)
Cigarette smokjng status
Former 171 (46%) 135 (50%) 36 (38%)
Current 197 (54%) 137 (50%) 60 (62%)
Pack years of smoking 58 (46, 80) 57 (45, 80) 60 (49, 84)
Histology
Adenocarcinoma 185 (50%) 137 (50%) 48 (50%)
Squamous cell carcinoma 73 (20%) 50 (18%) 23 (24%)
Large cell C=carcinoma 16 (4.3%) 9(3.3%) 7(7.3%)
Adenosquamous carcinoma 8 (2.2%) 3(1.1%) 5(52%)
Neuroendocrine/Carcinoid tumors 1(0.3%) 1(0.4%) 0 (0%)
Bronchioloalveolar carcinoma 70 (19%) 59 (22%) 11 (11%)
NSCLC NOS 15 (4.1%) 13 (4.8%) 2(2.1%)
Pathologic stage
1A 230 (62%) 188 (69%) 42 (44%)
1B 49 (13%) 36 (13%) 13 (14%)
A 11 (3.0%) 8 (2.9%) 3(3.1%)
1B 39 (11%) 26 (9.6%) 13 (14%)
IIA 33 (9.0%) 13 (4.8%) 20 (21%)
11IB 3 (0.8%) 1(0.4%) 2(2.1%)
v 3(0.8%) 0 (0%) 3(3.1%)
Radiotherapy 27 (7.3%) 9 (3.3%) 18 (19%)
Chemotherapy 83 (23%) 49 (18%) 34 (35%)
Surgery type
Wedge/MultiplewWedge resection 45 (12%) 30 (11%) 15 (16%)
Segmentectomy 14 (3.8%) 8 (2.9%) 6 (6.2%)
Lobectomy 287 (78%) 222 (82%) 65 (68%)
Bilobectomy 15 (4.1%) 9 (3.3%) 6(6.2%)
Pneumonectomy 7 (1.9%) 3(1.1%) 4(4.2%)
Asthma 27 (7.3%) 18 (6.6%) 9(9.4%)
Bronchitis 35(9.5%) 23 (8.5%) 12 (12%)
COPD 39 (11%) 24 (8.8%) 15 (16%)
Diabetes 33(9.0%) 20 (7.4%) 13 (14%)
Emphysema 48 (13%) 32 (12%) 16 (17%)
Heart disease 52 (14%) 35(13%) 17 (18%)
Hypertension 134 (36%) 98 (36%) 36 (38%)
Prior pneumonia 77 (21%) 53 (19%) 24 (25%)
Obstructive lung disease 88 (24%) 58 (21%) 30 (31%)

Note. ! Median (IQR); n (%)

most prevalent comorbidity (36%), followed by obstructive lung
disease (24%) and prior pneumonia (21%).

To extract features from CT scans, we followed the image pro-
cessing pipeline as outlined in Figure S2 in the Supplementary
Material. We first removed noise from the images through
gray-scale normalization and adaptive histogram equalization.
We then normalized the voxel intensity of each image to a
standard range of 0 (black)-255 (white) units and improved
the contrast with adaptive histogram equalization. We next

identified the regions of interests (ROIs) and segmented the
tumor regions based on their location and size. We used pyra-
diomics to extract texture features from the ROIs, including
first-order features, shape-based features, and higher-order fea-
tures (Amadasun and King, 1989). We applied image filtration
using the Laplacian of Gaussian filter and a 3D LBP-based
filter; the Laplacian of Gaussian filter highlights areas of gray
level change (Kong et al, 2013), and the 3D LBP-based
filter computes local binary patterns in 3D using spherical

GZ0Z 18quisAoN 0z Uo Jasn ueBiyoipy 1o Ausiaaiun Aq €081 19//4Z0peln/1L/08/31911e/So1ewolg/wod dno olwapeoe//:sdiy Wolj papeojuMo(]


https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad024#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad024#supplementary-data

10 e  Biometrics, 2024, Vol. 80, No. 1

’ 20
02
09

0.4
- -
c 08 c
o ey o -0.6
E —— Female E 08
5 0.7 5
O (&}

-1.0

58.0 60.0 62.0 64.0 66.0 68.0 240 260 280
Age

(a) Gradient for g of age

: 600 620 640 660 )
Age

(d) g of age and BMI

50.0 60.0

06 R/\ 12 \—’H_\/_/ﬁ

(b) Gradient for § of BMI

Pack Years

(e) g of pack years of smoking and BMI

— Male
—— Female

o

-
c
&
B 10
o
o
05
— Male
—— Female ’E\Ah_/\/—/—\
0.0
320 340 360 380 50.0 60.0 70.0 80.0
Pack Years

(¢) Gradient for g of pack years of smoking

-0.45
80.0

Rt 75.0

015 5 700

o
000 o 850
o
o 60.0
- -0.15 &

- -0.30

70.0 80.0 60.0 62.0 64.0 66.0

Age
(f) g of age and pack years of smoking

FIGURE 3 Estimated Nonlinear Function and Gradients using NLST: The gradients for g of age, BMI, and pack years smoking history
stratified by gender are plotted in (a), (b), and (c). g of age, BMI, and pack years of smoking is plotted in (d) and (e). The other variables are
fixed at their sample means (for continuous variables) or modes (for categorical variables).

Penalized DPLC

SCAD

SCAD spline

Model

Cox Boosting

Random Forest

Deep Survival

55 60 65

70 75 80 85
C Statistic
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controlled to be the same as that in the entire population.

harmonics (Banerjee et al., 2012). A total of 320 image features
were extracted.

To compare the prediction and selection accuracy of the Pe-
nalized DPLC with other competing methods, we conducted
100 experiments. In each experiment, we tuned the number
of hidden layers and the number of neurons in each hidden
layer over the grids of [1, 2, 3, 4] and [2, 4, 8, 16], respec-
tively, when constructing the DNN, and randomly divided the
data into 80% for training and the remaining 20% for test-
ing. To ensure that the censoring rate in the training and test-
ing data remained the same as in the entire population, we
split the data by stratifying the vital status of the patients.

Similar to the simulation study, we tuned the number of hid-
den layers and the number of neurons in each hidden lay-
ers over the grid of [1, 2, 3, 4] and [2, 4, 8, 16], respec-
tively.

Figure 3a—f illustrate the estimated effects of age, BMI, and
pack years of smoking while holding other variables constant
at their mean (for continuous variables) or mode (for categor-
ical variables), as derived from the estimated g function. These
contour plots clearly reveal the nonlinear relationships between
age, BMI, and pack years of smoking and survival. The gradients
of g for age, BMI, and pack years, stratified by gender, are pre-
sented in Figure 3 a—c, reflecting the local change in the log haz-
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ard for small changes in the corresponding variables. Figure 3a
and c exhibit positive gradients for age and pack years, indicat-
ing that mortality increases with increasing age and pack years,
consistent with the literature (Tindle et al., 2018). In contrast,
Figure 3b shows that BMI has a protective effect on patient sur-
vival, in agreement with the obesity paradox (Lee and Giovan-
nucci, 2019). Moreover, we observe that gender has a significant
impact on lung cancer survival. As seen in the gradient figures,
male patients exhibit a steeper increase in mortality risk com-
pared to female patients for small increments in age and pack
years, as shown in Figure 3a and c. On the other hand, Figure 3b
highlights that an increased BMI has a stronger protective effect
for female patients compared to male patients, consistent with
previous findings of better survival outcomes for female patients
(Visbal et al., 2004).

The Penalized DPLC method has selected 5 radiomic fea-
tures as risk factors: large dependence low gray level emphasis
(LDLGLE), large area emphasis (LAE), large area low gray level
emphasis (LALGLE), cluster shade, and contrast. Figure S3 in
the Supplementary Material demonstrates the reproducibility of
feature selection by the Penalized DPLC and the hazard ratios
for the selected features. LDLGLE (HR: 1.07) and cluster shade
(HR: 1.09) were selected 71 and 57 times out of 100 exper-
iments, respectively. Although LALGLE (Frequency: 51, HR:
1.02) and contrast (Frequency: 41, HR: 1.02) were selected less
frequently than the other texture features, they were still more
frequently selected by the Penalized DPLC.

The selected radiomic features have biological significance.
LDLGLE and LALGLE represent the extent of low voxel inten-
sities or soft-tissue attenuation, indicating the presence of lym-
phatic or vascular invasion (Higgins et al., 2012); LAE, cluster
shade, and contrast quantify the roughness and heterogeneity of
textures (Amadasun and King, 1989).

As shown in Figure 4, the median C-Index for Penalized
DPLC is 0.708 (IQR: 0.043), outperforming the other com-
peting methods. Deep Survival (Median: 0.672, IQR: 0.065),
Random Forest (Median: 0.656, IQR: 0.080), and Cox Boost-
ing (Median: 0.668, IQR: 0.066) all had better prediction per-
formance than the SCAD-penalized Cox model (Median: 0.65S,
IQR: 0.068) and the SCAD-penalized partiallylinear Cox model
(Median: 0.633, IQR: 0.065).

6 DISCUSSION

To address the analytical needs of the National Lung Screening
Trial (NLST), we propose the Penalized DPLC model, which
simultaneously selects and models the effects of prognostic ra-
diomic features. Our adopted partial linear model assumes a log-
linear relationship between radiomic features and hazards, al-
lowing us to use the SCAD penalty to identify important im-
age features. Clinical features with known associations with sur-
vival outcomes are modeled using a nonparametric function to
account for their nonlinear effects. Despite this structured ap-
proach, we maintain the flexibility to model selected radiomic
features using nonparametric functions like the clinical features.
Our method provides a convenient means to explore new pre-
dictors while fully characterizing the impact of established risk
factors.

Biometrics, 2024, Vol. 80,No.1 ¢ 11

There is significant potential for future work. Our modeling
framework can be extended to incorporate alternative penalties,
such as the LASSO and MCP (Tibshirani, 2011). We are cur-
rently utilizing a DNN estimator with a fixed and moderate di-
mension, which is suitable for our dataset where the number of
clinical variables is moderate. It is feasible to develop DNN esti-
mators that can handle high-dimensional predictors. Moreover,
quantifying the uncertainty of the estimates remains a significant

challenge.

SUPPLEMENTARY MATERIALS

Supplementary material is available at Biometrics online.

Figures, proofs of theorems, simulation data, and codes to run
the simulations as referenced in Sections 3-5 are available with
this paper at the Biometrics website on Oxford Academic.
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